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A Dynamic Model of Housing Supply†

By Alvin Murphy*

This paper estimates a dynamic microeconometric model of housing 
supply. The model features forward-looking landowners who opti-
mally choose both the timing and the nature of construction while 
taking into account expectations about future prices and costs. The 
model is estimated using a unique dataset describing individual 
landowners in the San Francisco Bay Area. Results indicate that geo-
graphic and time-series variation in costs are key to understanding 
where and when construction occurs. Pro-cyclical costs provide an 
incentive for some landowners to build before price peaks. Results 
also indicate that landowners actively “time” the market, which 
reduces the elasticity of supply. (JEL C51, D12, E32, R21, R23, R31)

The length and severity of housing cycles, combined with the size of the construc-
tion industry, make obvious that understanding housing supply is an important 

issue.1 To explore the microfoundations of the housing market, I estimate a micro-
econometric model of housing supply using data describing owners of individual 
parcels of land in the San Francisco Bay Area.

Given the irreversible nature of development, one would expect landowners to 
be forward-looking with respect to both future prices and future costs. I incorporate 
this forward-looking behavior and find that it plays a critical role in determining 
construction activity. In particular, I find that this forward-looking behavior sub-
stantially reduces the housing-supply elasticity as landowners view current price 
increases as predictors of higher future prices and attempt to time the market, and 
that this effect is particularly strong during housing booms. In addition, I find that 
pro-cyclical costs reduce construction volatility as developers build ahead of price 
peaks as they anticipate rising costs and hence declining profits.

1 Although the majority of the housing literature has been concerned with demand-side issues, the housing sup-
ply literature has been growing since the review article of DiPasquale (1999), which outlines two broad alternative 
approaches to modeling housing markets: an investment/asset market approach (e.g., Poterba 1984 and Topel and 
Rosen 1988) and an urban spatial theory approach (e.g., DiPasquale and Wheaton 1994 and Mayer and Somerville 
2000). 
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I obtain these results by developing a dynamic microeconometric model of hous-
ing supply and estimating it using a rich new dataset. In the model, landowners 
choose both the optimal timing of and the optimal size of construction. These own-
ers take into account current profits and expectations about future profits, balancing 
expected future prices against expected future costs. Analyzing these decisions with 
a dynamic framework allows one to meaningfully separate the effects of current 
profits on supply from the effects of expected future profits on supply, which is the 
key mechanism through which forward-looking behavior reduces the housing sup-
ply elasticity.

The starting point for the empirical analysis is a unique micro-level dataset 
describing the owners of individual parcels of land in the San Francisco Bay Area, 
which I create by merging observed real estate transactions data with geocoded 
parcel data over the period 1988–2004. In the combined dataset, I observe which 
parcels of land are developed and, if a parcel is developed, I observe when the house 
is built and the characteristics of the house. The analysis focuses on the develop-
ment of single-family homes on individual parcels. This type of infill construction 
covers approximately one-half of all single-family residential construction in the 
San Francisco Bay Area over the sample period. The richness of these data allow 
me to identify the parameters of the landowner’s profit function at a fine level of 
geography.

I estimate three distinct results relating to prices, variable costs, and 
broadly-defined fixed costs, respectively. First, I find that the primary determinant of 
observed increases in house prices is an increase in the location-price premium and 
not an increase in construction costs. This result is consistent with the implications 
of Glaeser, Gyourko, and Saks (2005), which suggest that regulation is responsible 
for observed house price increases. Second, I find that variable costs vary pro-cy-
clically over the time period. This result is in contrast to previous research that has 
found physical construction costs (which are the key component of variable costs) 
to be relatively flat over time. I provide external validation of these variable-cost 
estimates by comparing them to cost indexes derived from construction-industry 
input prices. Third, I find that fixed-costs vary considerably over both geography 
and time. These fixed costs capture any additional costs such as set-up costs and 
regulatory stringency and play a large role in explaining observed patterns of con-
struction activity.

An interesting implication of these cost results is that pro-cyclical costs reduce 
construction volatility. The effects of time-varying prices have been documented 
by Case and Shiller (1989) and subsequent authors. However, less has been writ-
ten about the effect of time-varying costs. A simple model focused only on prices 
would suggest that landowners will wait until the peak of prices to develop their 
land. However, in the case of the San Francisco Bay Area, many landowners devel-
oped parcels in the mid-to-late-1990s at prices much lower than they would have 
received in expectation had they waited. Results show that pro-cyclical costs pro-
vided an incentive to these landowners to build before the peak of prices, as waiting 
for higher prices implied also waiting for higher costs.

The results also yield important implications for the housing supply elasticity. 
Forward-looking behavior substantially reduces the responsiveness of landowners 
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to current price changes. This reduction occurs because rising prices make building 
today more attractive, but also signal higher future prices, making waiting more 
attractive, thus reducing the responsiveness to current price. Interestingly, this 
forward-looking behavior suppresses the responsiveness to current price by a much 
greater extent during boom periods with rapidly rising land and house prices.

The remainder of this paper proceeds as follows. Section I discusses the existing 
literature. Section II introduces the data that I use to estimate the model. Section III 
outlines the model of housing supply (when and how parcel owners choose to develop 
their land) and Section IV explains the estimation procedure. Section V presents 
results, Section VI discusses the implications of these results for the housing-supply 
elasticity, and Section VII concludes.

I.  Related Housing-Supply Literature

This paper builds upon three distinct branches of previous literature, respectively 
relating to the ability of costs to predict construction activity, the need to include 
forward-looking behavior in housing-supply models, and the nature of the data used 
to estimate housing prices and costs.

A key result found in the previous literature is that construction costs have little to 
no effect on construction levels, e.g., Poterba (1984), Topel and Rosen (1988), and 
DiPasquale and Wheaton (1994). More recent studies have used industry-supplied 
data (both cross-sectional and time-series) and have concluded that physical con-
struction costs are not responsible for increases in house prices. One possible expla-
nation, as suggested in Somerville (1999), is that the cost measures used by this 
literature may not have captured the entire cost environment. Therefore, in contrast 
to previous papers that take costs from the data, I estimate costs using a model where 
both prices and costs determine construction activity.2

Another result found in the literature is that current price is not a sufficient sta-
tistic in determining supply and that dynamics are playing an important role, e.g., 
Topel and Rosen (1988).3 Building upon this result, a series of papers have used 
the insights of the real-options literature to explain the timing of housing develop-
ment decisions, e.g., Williams (1991); Grenadier (1996); Capozza and Li (1994); 
Bulan, Mayer, and Somerville (2009); and Dye and McMillen (2007).4 The haz-
ard-model approaches found in the empirical, real-options housing papers may be 

2 Another important topic in the housing-supply literature has been the impact of regulation. Papers such as 
Glaeser, Gyourko, and Saks (2006); Quigley and Raphael (2005); and Ortalo-Magné and Prat (2007) have exam-
ined the role of increased regulation in generating rising house prices, and Saiz (2010) examines the role of both 
physical and regulatory barriers to new construction. Quigley (2006), Kahn (2008), and Ortalo-Magné and Prat 
(2007) draw attention to the possible role of existing residents in limiting housing supply. The role of supply within 
a dynamic equilibrium setting is an important component of the work by Glaeser et al. (2014), who develop a 
dynamic equilibrium model, and calibrate its parameters using macro moments. 

3 Topel and Rosen (1988) estimates both short-run and long-run supply elasticities and argue that a lower 
estimated short-run elasticity implies that developers have expectations about future prices. In subsequent work, 
Paciorek (2013) specifies a dynamic model of the build/not-build decision and differs from this paper by using 
aggregate data (instead of micro data) across multiple cities. 

4 Capozza and Li (1994) develops a theoretical model of both the optimal timing and the optimal intensity of 
construction. Bulan, Mayer, and Somerville (2009) uses a real options framework to estimate how uncertainty 
affects housing development and Dye and McMillen (2007) estimates a model of teardown and redevelopment in 
Chicago. 
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interpreted as reduced forms of the structural approach taken in this paper. Although 
the computational tractability of the hazard-model approach is attractive, it does not 
facilitate the estimation of structural cost parameters, which I find to be important 
determinants of construction volatility. Another difference is that the real-options 
literature typically uses data describing only the timing of building while this paper 
uses data describing both the timing and the size of construction. This additional 
data facilitates the separate identification of fixed and variable costs of construction.

Finally, in contrast to much of the existing literature, this paper employs micro 
data. The main recommendation of DiPasquale (1999) was that research should 
incorporate micro data on new construction to study the microfoundations of hous-
ing supply. Due to data limitations, this recommendation has, for the most part, yet 
to be taken up.5

II.  Data

In this section, I describe a new dataset that I have assembled by merging infor-
mation about parcels suitable for construction with housing transactions data for the 
San Francisco Bay Area. In contrast to most of the previous literature on housing 
supply, I use micro data at the parcel level. This allows me to observe both when 
and how individual parcels are developed. From a set of undeveloped parcels in 
1988, I observe the year of construction, if the parcel was developed, and the type 
of construction, e.g., square footage and number of rooms, etc. The dataset pro-
vides information about parcels of land that were developed between 1988–2004 
and those that remained undeveloped. I focus on land parcels that were potentially 
suitable for small scale construction and do not consider subdivisions and major 
developments by large construction companies. The type of construction I consider 
covers approximately 55 percent of all construction in the San Francisco Bay Area 
during this time period.

The empirical analysis in this paper uses the six core counties of the San Francisco 
Bay Area: Alameda, Contra Costa, Marin, San Francisco, San Mateo, and Santa 
Clara. The San Francisco Bay Area contains some of the wealthiest neighborhoods 
in the United States and has a limited supply of land. The cities of the Bay Area, 
in particular San Francisco, are good examples of so called “Superstar Cities” as 
defined by Gyourko, Mayer, and Sinai (2013); they are characterized as having dis-
proportionately high-income households who pay a premium to live there but can 
generally expect high growth rates in housing prices. Albouy and Ehrlich (2012) 
estimate a productivity index that measures how difficult it is to convert land into 
housing and based on this index, the Bay Area is the most difficult-to-build metro 
area in the United States. This reflects the Bay Area’s high regulatory and geo-
graphic constraints on new housing.

The time period analyzed in the estimation is between 1988 and 2004 and the 
dataset that I construct is drawn from two main sources. The first data source is 
DataQuick, a national real estate data company, which provides information about 

5 Exceptions include Epple, Gordon, and Sieg (2010) and Combes, Duranton, and Gobillon (2016), both of 
which use micro data to estimate the parameters of a housing production function. 
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every housing unit sold in the core counties of the Bay Area. Overall, compared with 
the census micro data, the set of measured housing characteristics are considerably 
more complete. Further details on how new, single-family houses are identified in 
this data are provided in the online Appendix.

The second component of the dataset is the California Statewide Infill Study. The 
Institute of Urban and Regional Development (IURD) at the University of California, 
Berkeley conducted the study during 2004–2005 and the data provide a geocoded 
parcel inventory of all potential infill parcels in California. Using county assessors’ 
parcel data, these data identify both vacant and economically underutilized sites. 
County assessor records include every legal parcel in a county and are updated 
whenever a parcel is bought, sold, subdivided, or combined. Each record includes 
the area of each parcel, its principal land use, the assessed value of the land and any 
improvements, as well as its parcel address. Infill parcels are designated accord-
ing to whether the parcel is vacant or has a low improvement-value-to-land-value 
ratio. As I look at potential development of single family properties, I include 
vacant parcels and parcels with noncommercial residences that have a low 
improvement-value-to-land-value ratio, and further details are provided in the online  
Appendix.

To construct the dataset used in estimating the model, I merge the two datasets 
based on the census tract. The infill dataset provides data on all the infill parcels 
available in 2004. I construct the number of suitable parcels available in 1988 as the 
above number plus all properties built between 1988 and 2004 that were not part of 
subdivisions or large developments. The new dataset then contains all parcels from 
1988 and includes information about tract, parcel square footage, and date of con-
struction if building occurred.

As discussed below, some prices and costs are estimated at the census tract level. 
Typically, census tracts are areas with approximately 1,500 houses, although there 
is some variation in size. Tracts with very low levels of sales (less than 15) are 
excluded from the analysis and the remaining tracts number 613.

Descriptive Analysis/Trends in the Data.—The key feature of the data is varia-
tion in both the cross-sectional and time series dimensions of prices, housing char-
acteristics, and construction levels. I illustrate some of this important variation in the 
data in Figures 1, 2, and 3.

Figure 1 reports overall house price levels in the Bay Area from 1988 to 2004, 
where the index of real house prices is normalized to 1 in 1988. The estimated 
price levels are derived from a repeat sales analysis in which the log of the sales 
price (in 2000 dollars) is regressed on a set of year fixed effects as well as house 
fixed effects. The figure reveals a run-up in prices in the late 1980s followed by 
falling real prices between 1990 and the mid-1990s. Prices rose fairly quickly again 
between the mid-1990s and 2004. Overall, house prices were nearly twice as high 
(in real terms) in 2004 as they were in 1988.

In addition to the aggregate pattern, there was considerable heterogeneity across 
neighborhoods in terms of both the total levels of appreciation and the timing of 
when booms began. Figure 2 shows the geographic pattern of total real appreciation 
between 1990 and 2004. For ease of exposition, I show appreciation rates at the level 
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of Public Use Microdata Areas (PUMAs). The variation in total appreciation rates is 
large: some PUMAs saw as little as 50 percent real appreciation between 1990 and 
2004, whereas others more than doubled in real terms.

Total levels of construction of all single family residences are illustrated in 
Figure 3, panel A. As expected, construction trends are positively correlated with 
prices—this can be seen by comparing Figure 1 and Figure 3, panel A. We see a 
pronounced dip in construction levels in the early 1990s, followed by increasing 
levels from the mid-1990s onward. Construction levels drop off again as prices slow 
(or fall in many areas) in 2000 and 2001. Figure 3, panel B, shows the time trend 
of the square footage index in new infill construction between 1988 and 2004. The 
extent to which changes in new house size correlate with changes in marginal price 
of square footage will be important later for identifying cost parameters.

III.  A Dynamic Model of Housing Construction

This section outlines a model of housing construction, where the economic agents 
are the owners of parcels of land who decide when and how to develop their parcels.

A. Model

In each period, each parcel owner makes two decisions to maximize lifetime 
expected profits. First, the parcel owner decides whether or not to build on her par-
cel. This decision is denoted by ​​d​nt​​ ∈ {0, 1}​ , where ​d = 0​ when choosing to not 
build, ​d = 1​ when choosing to build, ​n​ indexes parcel owner and parcel, and ​t​ 
indexes time, which is measured in years. If a parcel owner decides to build, she 
makes a second decision about the level of housing services to construct, denoted 

Figure 1. Bay Area Real House-Price Appreciation Rate

Notes: Real price levels. 1988 real price level normalized to one.

1

1.2

1.4

1.6

1.8
H

ou
se

 p
ric

e 
in

de
x 

le
ve

l

Year

Bay area house price index levels
1988–2004

1988 1990 1992 1994 1996 1998 2000 2002 2004



VOL. 10 NO. 4� 249MURPHY: A DYNAMIC MODEL OF HOUSING SUPPLY

by ​h​. The parcel owner makes her decision to build or not knowing that she will 
choose the level of housing services optimally in the second decision. Once a par-
cel owner decides to build in a period, that period becomes a terminal period—this 
allows me to view the parcel owner’s problem as an optimal stopping decision, 
formulated in a familiar dynamic programming setup. The model therefore incor-
porates two decisions—when to build and how much to build—and generates three 
outcomes—whether the parcel owner built or not in each period, the level of housing 
services chosen, and a sales price for the property.

Figure 2. Real House-Price Appreciation Rates by PUMA: 1990–2004
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Neighborhoods, which in practice are census tracts, are indexed by ​j​ , where ​
j ∈ {1, … , J}​ , and the census tract that parcel ​n​ is located in is denoted by ​j(n)​. For 
notational convenience, I write ​j(n)​ simply as ​j​. The vector of observable parcel 
characteristics that affect the per period profits a parcel owner ​n ∈ {1, … , N}​ located 
in neighborhood ​j​ may receive from choosing to build in period ​t​ is denoted by ​​x​njt​​​.  
Included in ​​x​njt​​​ are direct characteristics of the parcel ​n​ , as well as characteristics 
of the neighborhood in which parcel ​n​ is located. The vector ​​x​njt​​​ can be divided into 
two components: parcel-level variables, ​​x​n​​​ , and neighborhood-level variables, ​​x​jt​​​. 
Price and variable cost shocks are denoted by ​​ν​nt​​​ and ​​η​nt​​​ , respectively. There is also 
an unobserved idiosyncratic overall profit shock, ​​ϵ​nt​​ = (​ϵ​0nt​​, ​ϵ​1nt​​)​ , which determines 
the profit parcel owner ​n​ receives from not building or building in period ​t​. Finally, 
the vector of observable state variables is denoted by ​​Ω​njt​​​ , where ​​Ω​njt​​​ contains ​​x​njt​​​ 
as well as any other observable variables (such as lagged prices and lagged costs) 
that predict future values of ​​x​njt​​​.

The primitives of the model are given by ​(π, q, β)​. Taking each in turn, ​​π​d​​  
= ​ π​d​​ (​h​njt​​ , ​x​njt​​ , ​ν​nt​​ , ​η​nt​​ )  + ​ϵ​dnt​​​ is the direct per period profit function associated with 
choosing option ​d​ and housing services, ​h​; ​q  =  q(​Ω​njt+1​​, ​ϵ​nt+1​​ |​Ω​njt​​, ​ϵ​nt​​)​ denotes the 
transition probabilities of the observables and unobservables, where the transition 
probabilities are assumed to be Markovian; and ​β​ is the discount factor.

Finally, in principle, housing services, ​h​ , could include all observable character-
istics of a house that the parcel owner is able to choose. One could use a continuous 
index of housing services to reduce the dimension of building choices (e.g., number 
bedrooms, number of bathrooms, square footage) to a single dimension. However, 
in practice, I include only square footage in ​h​ so that I can directly compare my esti-
mates of price and cost per square foot with other estimates in the literature.

B. Per Period Profits

The direct per period profit function is given by

(1)   ​​   π​1​​ (​h​nt​​ , ​x​njt​​ , ​ν​nt​​, ​η​nt​​) + ​ϵ​1nt​​ 

	 =  P( ​h​nt​​ , ​x​njt​​ , ​ν​nt​​) − (VC( ​h​nt​​ , ​x​njt​​ , ​η​nt​​ ) + FC(​x​njt​​)) + ​ϵ​1nt​​​.

Prices are given by

(2)	​ P(​h​nt​​, ​x​njt​​, ​ν​nt​​)  = ​ ρ​jt​​ Q(​h​nt​​, ​x​n​​, ​ν​nt​​)​,

where ​Q( ​h​nt​​, ​x​n​​, ​ν​nt​​)  =   ​h​ nt​ 
​γ​1jt​​​ ​x​ n​ 

​γ​2jt​​​ ​e​​ ​ν​nt​​​​. Therefore, prices are equal to the price of a 
unit of housing quality, ​​ρ​jt​​​ , times the quantity of housing quality, ​​Q​nt​​​. The price of 
a unit of housing quality, ​​ρ​jt​​​ , varies by neighborhood and year, incorporating the 
effects of ​​x​jt​​​ on house price. Housing quality is composed of three terms: the choice 
variable, housing services, ​h​; the fixed parcel characteristics, ​​x​n​​​; and a normally 
distributed error term, ​​ν​nt​​​ , with variance ​​σ​ ν​ 

2​​. In practice, ​h​ is house square footage, ​​
x​n​​​ includes lot size, and ​​ν​nt​​​ is assumed to be independent of ​​Ω​njt​​​. The vector of price 
parameters, which I denote by ​γ​ , varies by neighborhood, ​j​ , and time, ​t​. I assume 
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that the parcel owner knows the current price parameters, ​γ​ , and parcel character-
istics when making her build/don’t build decision, but that the price error, ​​ν​nt​​​ , is 
not revealed until after construction and time of sale. The price function is an equi-
librium price equation, where each parcel owner (who is small relative to the total 
market) takes the prices as given.6

Costs are comprised of two components, variable costs, ​VC(​h​nt​​ , ​x​njt​​ , ​η​nt​​)​ , and 
fixed costs, ​FC(​x​njt​​)​. Variable costs are specified as

(3)	​ VC(​h​nt​​ , ​x​njt​​ , ​η​nt​​)  =  (​α​0jt​​ ​x​ n​ 
​α​1​​​ ​e​​ ​η​nt​​​)  ⋅ ​h​nt​​​

and increase at a linear rate in the quantity of housing services, where the rate is 
determined by the parcel characteristics, neighborhood, time, and a normally dis-
tributed error term, ​​η​nt​​​ , with variance ​​σ​ η​ 

2​​. I assume that the parcel owner observes 
the cost shock before the housing-services decision is made, but after the decision to 
build is made, and that it is independent of ​​Ω​njt​​​.

Variable costs, by definition, include any costs that vary with ​h​. As such, in addi-
tion to physical construction costs, they capture any regulatory burdens that increase 
with housing services. Furthermore, any variation across geographic space or time 
in this type of regulatory burden will be reflected in variation across space and time 
in the variable costs measures.

The second component of costs, ​FC(​x​njt​​)​, captures the broader cost environment. 
These remaining costs are labeled fixed costs because they capture any costs asso-
ciated with construction that do not vary with the size of the house. Factors such as 
difficulty in obtaining a building permit will cause fixed construction costs to vary spa-
tially. Fixed costs vary at the county-by-year level and are specified as ​FC(​x​njt​​) = ​δ​ct​​​ , 
where ​c​ denotes the county in which parcel ​h​ is located.

The final component to profits is a profit shock, ​​ϵ​dnt​​​ , which is assumed to be 
distributed i.i.d. Type 1 Extreme Value with scale parameter, ​​σ​ϵ​​​ , and mean equal to 
zero. This shock, whose current value is observed by the parcel owner before they 
decide to build, can be interpreted as a shock to fixed costs and could reflect factors 
at the parcel level or idiosyncratic parcel owner characteristics. For example, shocks 
to health, family, or employment status could make developing a parcel more or less 
attractive in a given year. As the per period profit is additively separable in this error, 
it does not affect the optimal housing services decision.

I assume that the three errors are independent—the assumption of independence 
between price and costs shocks would only be violated if a parcel owner could pass 
on a cost shock to the buyer, however, as the model is estimated at a fine level of 
geography, this seems unlikely.7

6 Using a similar dataset, Bayer et al. (2016) estimates a dynamic discrete-choice model of neighborhood choice 
in the San Francisco Bay Area to recover the willingness to pay for neighborhood amenities. Analogously to this 
paper, households are assumed to be small relative to the total market and to take neighborhood house prices as 
given. 

7 Although correlation between the variable cost shock and fixed cost shock is a possibility, the fine level of 
geography should also mitigate against this. One could model correlation among the errors by allowing a common 
component to come from a finite mixture distribution using the framework developed in Arcidiacono and Miller 
(2011). 
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C. Optimal Housing Services

Conditional on choosing to build, a parcel owner will choose ​h​ to maximize prof-
its. As the price error, ​​ν​nt​​​ , is unobserved at the time of that decision, the agent takes 
the expectation of prices with respect to ​​ν​nt​​​ and the first-order condition for maxi-
mization is given by8

(4)	​​ γ​1jt​​ ​ρ​jt​​ ​h​ nt​ 
​γ​1jt​​−1​ ​x​ n​ 

​γ​2jt​​​ ​e​​ 0.5​σ​ ν​ 
2​​ − ​α​0jt​​ ​x​ n​ 

​α​1​​​ ​e​​ ​η​nt​​​  =  0​.

The second-order conditions require ​​γ​1jt​​ < 1,​ which is always satisfied in the empir-
ical results. Therefore, solving (4) yields the optimal housing services, ​​h​​ ∗​​:

(5)	​​ h​ nt​ 
∗ ​  = ​ ​(​ 

​γ​1jt​​ ​ρ​jt​​ ​x​ n​ 
​γ​2jt​​​ ​e​​ 0.5​σ​ ν​ 

 2​​
  ___________ 

​α​0jt​​ ​x​ n​ 
​α​1​​​ ​e​​ ​η​nt​​​

 ​ )​​​ 

​  1 _ 
1−​γ​1jt​​

 ​

​​.

D. Optimal Discrete Choice

Plugging (5) into (1) yields the indirect flow profit function associated with 
building, ​​π​1​​ (​h​ nt​ 

∗ ​ (​x​njt​​, ​η​nt​​), ​x​njt​​, ​ν​nt​​, ​η​nt​​)  + ​ϵ​1nt​​​. However, as the price error, ​​ν​nt​​​ , and 
variable cost error, ​​η​nt​​​ , are observed after the decision to build is made, the relevant 
object for the optimal discrete choice is the expected indirect flow profit, which is 
denoted by ​​​π ̅ ​​1​​ (​x​njt​​)​. Denoting ​​E​​ν​nt​​, ​η​nt​​​​ [​P​nt​​ (​h​ nt​ 

∗ ​ (​x​njt​​ , ​η​nt​​ ), ​x​njt​​ , ​ν​nt​​ ) | ​Ω​njt​​ ]​ with ​​ 
_

 P ​(​x​njt​​)​ 
and denoting ​​E​​η​nt​​​​ [V​C​nt​​ (​h​ nt​ 

∗ ​ (​x​njt​​ , ​η​nt​​), ​x​njt​​ , ​η​nt​​ ) | ​Ω​njt​​ ]​ with ​​ ‾ VC ​(​x​njt​​)​ , the expected 
indirect flow profit, ​​​π ̅ ​​1​​ (​x​njt​​)​ , is given by9,10

(6)	​​​ π ̅ ​​1​​ (​x​njt​​)  = ​ 
_

 P ​(​x​njt​​) − (​ ‾ VC ​(​x​njt​​) + FC(​x​njt​​)) + ​ϵ​1nt​​​.

The deterministic component of the per period profits from choosing to not build 
(​d = 0​) is normalized to zero, so that the indirect flow profit function (associated 
with not building) is ​​π​0​​ (​x​njt​​) + ​ϵ​0nt​​  = ​ ϵ​0nt​​​.

Lifetime expected profits can be represented by a Bellman Equation which 
decomposes the value function into the per period profits at time ​t​ and the expected 
sum of per period profits from time ​t + 1​ onward. Under the assumption that the 
process ends when building occurs and the normalization of deterministic per period 
profits (associated with not building) to zero, the value function can be written as

(7)	 ​​ V​t​​ (​Ω​njt​​ , ​ϵ​nt​​)  =  max​{​​π  ̅​​1​​(​x​njt​​) + ​ϵ​1nt​​, ​ϵ​0nt​​ + E[ β​V​t+1​​ (​Ω​njt+1​​ , ​ϵ​nt+1​​) | ​Ω​njt​​ , ​ϵ​nt​​ ]}​​. 

8 ​​E​​ν​nt​​​​ [ ​P​nt​​ | ​Ω​njt​​ , ​h​nt​​ ]  = ​ ρ​jt​​ ​h​ nt​ 
​γ​1jt​​​ ​x​ n​ 

​γ​2jt​​​ ​e​​ 0.5​σ​ ν​ 
2​​​.

9 ​​​ 
_

 P ​​nt​​  = ​ ρ​jt​​ ​​
(

​ 
​γ​1jt​​ ​ρ​jt​​ ​x​ n​ 

​γ​2jt​​​ ​e​​ 0.5​σ​ ν​ 
2​​
  ____________  

​α​0jt​​ ​x​ n​ 
​α​1​​​ ​e​​ ​ 

−0.5​γ​1jt​​
 _ 

1−​γ​1jt​​
 ​​ σ​ η​ 

2​​
 ​
)

​​​ 

​ 
​γ​1jt​​
 _ 

1−​γ​1jt​​
 ​

​​x​ n​ 
​γ​2jt​​​ ​e​​ 0.5​σ​ ν​ 

 2​​.

​ 

10 ​​​ ‾ VC ​​nt​​  = ​ ​(​α​0jt​​ ​x​ n​ 
​α​1​​​ ​e​​ ​ 

−0.5​γ​1jt​​
 _ 

1−​γ​1jt​​
 ​​ σ​ η​ 

2​​)​​​ 

​ 
−​γ​1jt​​

 _ 
1−​γ​1jt​​

 ​

​⋅ ​​(​γ​1jt​​ ​ρ​jt​​ ​x​ n​ 
​γ​2jt​​​ ​e​​ 0.5​σ​ ν​ 

2​​)​​​ 
​  1 _ 
1−​γ​1jt​​

 ​

​​ .
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Given the assumption that the profit shocks are distributed i.i.d., Type 1 Extreme 
Value and assuming that the problem has an infinite horizon allows me to define the 
choice-specific value functions as follows:11

(8) ​​ v​1​​(​Ω​njt​​)  = ​​ π ̅ ​​1​​ (​x​njt​​),

	​ v​0​​(​Ω​njt​​)  =  β​σ​ϵ​​ ​(​∫ 
 
​ 
 
​​log ​[exp (​v​0​​ (​Ω​njt+1​​)/​σ​ϵ​​) + exp (​​π ̅ ​​1​​ (​x​njt+1​​)/​σ​ϵ​​)]​ q( ​Ω​njt+1​​| ​Ω​njt​​) d ​Ω​njt+1​​)​.​

The choice-specific value function is the deterministic component of the lifetime 
expected utility an agent would receive from choosing option ​d​. It includes the two 
avenues through which today’s choice affects utility/profits. The first is the current 
profit associated with choosing ​d​. The second is the expected value of the best option 
next period conditional on choosing ​d​ this period; that is, how this period’s decision 
affects next period’s payoffs. By convention, the choice-specific value function, ​​v​d​​​ , 
does not include the error term, ​​ϵ​dnt​​​. Therefore, an agent will choose ​d ∈ {0, 1}​ to 
maximize ​​v​d​​ (​Ω​njt​​) + ​ϵ​dnt​​​.

IV.  Estimation

There are three outcomes associated with the model. The first two are choices 
made by the parcel owner: the binary decision to build or not in each period, and the 
housing service provision decision made conditional on building. The final outcome 
is the sales price of all properties that sell.

Let ​​θ​p​​​ denote ​(ρ, ​γ​1​​, ​γ​2​​, ​σ​ν​​)​, ​​θ​h​​​ denote ​(​α​0​​, ​α​1​​, ​σ​η​​)​, and ​​θ​d​​​ denote ​(δ, β, ​σ​ϵ​​)​. 
Given the timing of the decisions and the assumption of independence across errors, 
the log-likelihood function can be broken into the following three pieces: ​​L​p​​ ( ​θ​p​​ |P, Ω)​ , 
the log-likelihood contribution of prices; ​​L​h​​ ( ​θ​p​​, ​θ​h​​ |h, Ω)​, the log-likelihood contri-
bution of housing services; and ​​L​d​​ (​θ​p​​, ​θ​h​​, ​θ​d​​ |d, Ω)​, the log-likelihood contribution 
of the binary construction decision. The total log-likelihood function is the sum of 
the three components:

(9)	​ L(θ)  = ​ L​p​​ (​θ​p​​ |P, Ω) + ​L​h​​ (​θ​p​​ , ​θ​h​​ |h, Ω) + ​L​d​​ (​θ​p​​ , ​θ​h​​, ​θ​d​​ |d, Ω)​,

where ​θ  =  (​θ​p​​, ​θ​h​​, ​θ​d​​)​.
In theory, I could choose ​θ​ to maximize (9) directly. However, given the large 

number of parameters, in practice I estimate the model in stages. In the first stage, I 
estimate ​​θ​p​​​ by maximizing ​​L​p​​ (​θ​p​​ |P, Ω)​. Then, using the estimates of ​​θ​p​​​ , I estimate ​​
θ​h​​​ by maximizing ​​L​h​​ (​​θ ˆ ​​p​​ , ​θ​h​​ |h, Ω)​. Finally, I can obtain consistent estimates of ​​θ​d​​​ 
by taking the estimates of ​​θ​p​​​ and ​​θ​h​​​ as given and choosing ​​θ​d​​​ to maximize ​​L​d​​ (​​θ ˆ ​​p​​, ​​θ ˆ ​​h​​ , ​
θ​d​​ |d, Ω)​. To estimate the third stage, which is a dynamic discrete choice model, I 
use a two-step estimator similar to Arcidiacono and Miller (2011) where transition 

11 Similar to Rust (1987), I am also assuming that ​​ϵ​nt​​​ has no predictive power for ​​Ω​njt+1​​​. That is, ​q  =  q( ​Ω​njt+1​​ , ​
ϵ​nt+1​​ | ​Ω​njt​​, ​ϵ​nt​​)  =  q( ​Ω​njt+1​​ | ​Ω​njt​​) q(​ϵ​nt+1​​)​. The infinite horizon assumption implies ​​V​t​​ (​Ω​njt​​ , ​ϵ​nt​​)  =  V(​Ω​njt​​ , ​ϵ​nt​​)​ and ​​
d​t​​ (​Ω​njt​​, ​ϵ​nt​​)  =  d(​Ω​njt​​, ​ϵ​nt​​ )​. 
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and choice probabilities are estimated in a first step and the structural parameters are 
estimated in the second step.

Estimating the model in stages does not affect the consistency of the estimates, 
but does reduce efficiency. To account for the multiple stage procedure, a bootstrap 
procedure is used to calculate the standard errors.12

Finally, it is first worth noting that the functional form assumptions made in the 
paper are not required to secure identification. They do, however, provide a number 
of important benefits. The first is that they reduce the computational burden. The 
second is that they allow for closed-form solutions that make identification more 
transparent. The third is that they avoid over fitting the data. That said, the standard 
downsides of making parametric assumptions apply and, as such, I conduct a sensi-
tivity analysis to the key parametric assumptions, which I discuss below and in the 
online Appendix.

A. Estimation—Housing Prices

To estimate the parameters of the price function given in (2), I estimate the fol-
lowing equation separately for each tract ​×​ year combination:

(10)	​ log (​P​nt​​ )  =  log (​ρ​jt​​) + ​γ​1jt​​ log (​h​nt​​) + ​γ​2jt​​ log (​x​n​​) + ​ν​nt​​​,

where ​​P​nt​​​ , ​​h​nt​​​ , and ​​x​n​​​ denote observed sales price, house square footage, and lot 
size.13 To improve the efficiency of the estimates, I use a standard, Locally Weighted 
Regression approach. The approach is a special case of Locally Weighted Regression 
sometimes called Conditionally Parametric Regression or Geographically Weighted 
Regression. McMillen and Redfearn (2010) describes this class of estimator, which 
is related to the estimation approach outlined in Racine and Li (2004). More spe-
cifically, for a given tract/year regression, I use all sales in that year, but weight the 
observations differently depending on how far from the given tract each house is. I 
also use both sales of new houses and sales of second-hand houses and weight the 
new-house sales more heavily.14

This hedonic price function, where house prices are modeled directly as a func-
tion of the observable characteristics of the house, allows the implicit price of square 
footage to vary both by tract and by year. This is important in the context of the 
model and the nature of limited land availability in the Bay Area. With limited land, 
the increase in house prices in the Bay Area is driven more by the increasing value of 

12 I employ a standard, nonparametric bootstrap and resample the data 250 times to reestimate the model. As the 
price regression is specified at the tract-by-year level, I resample the sales data separately by tract-year. 

13 As outlined in Section IIIA, ​​x​n​​​ represents the vector of parcel-level characteristics. In the empirical applica-
tion, this vector is one-dimensional and denotes lot size. 

14 The weight is determined by the product of three subweights: the first is a continuous, normal-kernel weight 
based on how far the house is from the centroid of the tract of interest (with a bandwidth of two times the standard 
deviation of distance); the second is a discrete-kernel weight, which is twice as large if the house is in the same 
county as the tract of interest; and the third is a discrete-kernel weight, which is twice as large if the house is a new 
house. I choose the weights based on a visual inspection of the data, and the results are not sensitive to the choice 
of weights. As this estimator contains a nonparametric component, standard issues of finite-sample bias arise and a 
greater number of observations within each tract-year would reduce this bias. Smoothing is only used in the estima-
tion of equation 10 and is not required for the cost regressions described in Sections IVB and IVC. 
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land rather than other housing attributes such as square footage. One would assume 
that if we see a house double in price over the sample period, the component of 
price explained by square footage would have increased by far less than a factor of 
two. As the model predicts that parcel owners will respond to the implicit price of 
housing services, it is important to accurately estimate this return.15

B. Estimation—Variable Costs

Given estimates of the pricing parameters, I can rearrange the equation for opti-
mal housing services (5) to get the following housing service regression equation

(11) ​ (​γ​1jt​​ − 1) log (​h​nt​​) + log (​γ​1jt​​) + log (​ρ​jt​​) + ​γ​2jt​​ log (​x​n​​) + 0.5 ​σ​ ν​ 
2 ​ 

	 =  log (​α​0jt​​) + ​α​1​​ log (​x​n​​) + ​η​nt​​​.

I parameterize ​log (​α​0jt​​)​ as

(12)	​ log (​α​0jt​​)  =  log (​α​0​​) + log (​α​j​​) + log (​α​t​​ )​.

Estimating (11) by least squares yields estimates of ​log (​α​0​​)​, ​log (​α​j​​)​, ​log (​α​t​​)​ , ​​α​1​​​ , 
and the variance of ​​η​nt​​​.

16

An alternative way to look at this regression is to use the first-order condition 
from profit maximization where the standard result dictates that marginal revenue 
should be equal to the marginal cost of adding one additional square foot. Given that 
marginal revenue is known at all points from the first-stage regression, we can iden-
tify marginal costs at points observed in the data and therefore recover the variable 
cost function.

As discussed above, variable costs capture any regulatory costs that vary with 
size, which may suggest that the variable cost function could be nonlinear and pre-
sumably convex. To address this potential concern, I conduct a sensitivity analysis 
in the online Appendix, which allows for a quadratic variable-cost function. The 
variable cost function is estimated to be convex. However, the degree of nonlinearity 
is very small and, as such, the results are similar. I include the linear variable-cost 
function as the primary specification as it allows for the closed-form solution for 
optimal housing size in (5) and (11), which makes the identification of the variable 
cost parameters more transparent.

15 The common alternative to a hedonic pricing model is a repeat sales model (Bailey, Muth, and Nourse 1963; 
Case and Shiller 1987; and Case and Shiller 1989). The repeat sales framework controls for time-invariant unob-
served house characteristics. However, it imposes that the relative implicit prices of housing attributes remain con-
stant. Another alternative is a hybrid repeat-sales and hedonic approach, such as Case and Quigley (1991), which 
allows the relative implicit prices of housing attributes to vary over time. 

16 The approach of combining estimates of the price function with the size of construction is closely related to 
the estimation of Rosen (1974) style models. Ekeland, Heckman, and Nesheim (2004) showed formally that such 
models are identified even in single markets with nonlinear price gradients. As I estimate the price function sepa-
rately for each tract and year, but include a common time-trend in log variable costs, I effectively have multi-market 
data making the identification even richer. 
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C. Estimation—Dynamic Discrete Choice

Given results of the first two stages, the remaining structural parameters are ​​
θ​d​​ = (δ, β, ​σ​ϵ​​)​. One estimation approach would be to use an estimator similar to 
Rust (1987), where the value functions are computed by a fixed point iteration for 
each guess of the parameters to be estimated. Such an approach, while efficient, 
would be computationally prohibitive in the context of this model. Therefore, I use 
a computationally more simple two-step estimation approach. To simplify the prob-
lem, I use insights from Hotz and Miller (1993) and Arcidiacono and Miller (2011) 
to take advantage of the terminal state nature of the dynamic discrete choice prob-
lem and rewrite ​​v​0​​ (​Ω​njt​​)​ (from equation 8) as the expected future per period profit 
of choosing to not build and a function of the next period probability of choosing 
to build:

(13)	 ​​ v​0​​ (​Ω​njt​​)  =  β ​(​∫ 
 
​ 
 
​​​(​​π ̅ ​​1​​ (​x​njt+1​​) − ​σ​ϵ​​ log  [ ​P​1​​(​Ω​njt+1​​)])​q(​Ω​njt+1​​ | ​Ω​njt​​) d ​Ω​njt+1​​)​​,

where ​​P​1​​ (​Ω​njt​​)​ is the conditional choice probability of choosing to build and is 
given by

(14)	​ ​P​1​​ (​Ω​njt​​)  ≡  Pr (​d​nt​​ = 1|​Ω​njt​​ )  = ​   1 ________________  
1 + ​e​​ ​v​0​​(​Ω​njt​​)/​σ​ϵ​​−​​π ̅ ​​1​​(​x​njt​​)/​σ​ϵ​​​

 ​​ .

Using the definition of expected indirect flow profits, ​​​π ̅ ​​1​​ (​x​njt​​)​, the difference in 
value functions is given by

(15)  ​​v​1​​ (​Ω​njt​​) − ​v​0​​ (​Ω​njt​​)  =  (​​ 
_

 P ​​nt​​ − ​​ ‾ VC ​​nt​​) + (β ​E​t​​ ​δ​ct+1​​ − ​δ​ct​​) 

− β​(​∫ 
 
​ 
 
​​​(​​ 
_

 P ​​nt+1​​ − ​​ ‾ VC ​​nt+1​​ − ​σ​ϵ​​ log  [ ​P​1​​ (​Ω​njt+1​​) ])​q(​Ω​njt+1​​ | ​Ω​njt​​) d ​Ω​njt+1​​)​.​

Equation (15) forms the basis of a straightforward two-step estimator. The first 
step involves estimating both the transition probabilities, ​q( ​Ω​njt+1​​| ​Ω​njt​​ ) ,​ and the 
conditional choice probability, ​​P​1​​ (​Ω​njt+1​​)​. The second step then takes estimates 
of ​​​ 

_
 P ​​nt​​​ , ​​​ ‾ VC ​​nt​​​ , ​​​ 

_
 P ​​nt+1​​​ , ​​​ ‾ VC ​​nt+1​​​ , ​​∫  ​ 

 ​​log  [ ​P​1​​(​Ω​njt+1​​) ]​ , and ​q(​Ω​njt+1​​ | ​Ω​njt​​ ) d ​Ω​njt+1​​​ as 
data and estimates the remaining structural parameters, ​​θ​d​​ = (δ, β, ​σ​ϵ​​)​ , via max-
imum likelihood, where the coefficients on a set of county ​×​ year dummies will 
be estimates of ​(β ​E​t​​ ​δ​ct+1​​ − ​δ​ct​​ )​. Further details of this two-step procedure can be 
found in the online Appendix.

It is clear from (15) that additional assumptions regarding expectation forma-
tion are necessary to separately identify ​​δ​ct​​​ from ​(β ​E​t​​ ​δ​ct+1​​ − ​δ​ct​​)​. However, for the 
analysis below, the term of most interest is ​(β ​E​t​​ ​δ​ct+1​​ − ​δ​ct​​)​, which can be roughly 
interpreted as expected growth in the latent fixed costs.

Finally, fixed costs vary at the county ​×​ year level. Ideally, one would allow the 
fixed costs to vary at a finer level of geography like, for example, the price coeffi-
cients. However, the price data are more numerous, have a continuous outcome, and 
geographic weights are used to estimate the price coefficients. These features are 
not available or appropriate for the dynamic-discrete-choice outcome. The online 
Appendix presents the results of a sensitivity analysis where fixed costs vary at the 
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PUMA ​×​ year level, which (at approximately 100,000 residents) is a considerably 
smaller level of geography. For PUMAs which include a small number of observa-
tions in PUMA ​×​ year combinations, the results are noisy; however, for most of the 
PUMAs, the trends are qualitatively similar to the county ​×​ year case.

V.  Empirical Results

In this section, I present estimates of the parameters of the profit function. For 
simplicity, I present the results separately for each stage.

A. Hedonic Price Regressions

With over 600 tracts and 17 years of data, the estimates from (10) are too numer-
ous to report here. Therefore, I highlight key features of the results in Figures 4 
and 5. Figure 4, panel A, shows the distribution of the expected price (in year-2000 
dollars) of the “typical” house across census tracts. This “typical” house is the same 
across tracts and years and is defined as a new house with 1,670 square feet of living 
space and 6,800 square feet of lot size, corresponding to the sample means in the 
data. The figure shows considerable variation over tracts in the price of this consis-
tently-defined house. Figure 4, panel B, illustrates the time-series variation in the 
price of a typical house.

The key reason for estimating prices using the hedonic-price approach is to cap-
ture the variation in the implicit price of housing size, both over geography (U.S. 
census tracts) and through time. For each tract and year, I can calculate the marginal 
price of adding an additional square foot to the typical house. Figure 5, panel A, 
shows the distribution of these marginal prices across tracts, which will serve as 
one of the key sources of identification of variable housing costs. The other source 

Panel A. Across tracts Panel B. Over time

House price Year

0

0.5

1

1.5

2

28
0,

00
0

30
0,

00
0

32
0,

00
0

34
0,

00
0

36
0,

00
0

38
0,

00
0

40
0,

00
0

400,000

500,000

450,000

250,000

350,000

300,000

2.5

3

D
en

si
ty

H
ou

se
 p

ric
e

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

Figure 4. Price of a Typical House

Notes: Panel A plots a kernel density estimate of the distribution across census tracts of the expected price of a new 
house with 1,670 square feet of living space and a lot size of 6,800 square feet. 1,670 and 6,800 correspond to the 
sample means for house size and lot size, respectively. The expected price for each census tract is an average of the 
yearly expected prices between 1988 and 2004. Density is measured in units of 1/100,000. Panel B plots the time 
trend of the expected price, where the expected price for each year is an average of the census tract expected prices. 
All prices are in year-2000 dollars.
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of variation that I use to identify variable housing costs is the time-series variation 
in the marginal price of square footage, which is shown in Figure 5, panel B. The 
online Appendix presents county-specific versions of Figures 4 and 5 and shows that 
the overall Bay Area time trend arises from a mix of county-specific time trends. 
The online Appendix also presents versions of Figures 4 and 5 for houses with the 
twenty-fifth and seventy-fifth percentile of house size and lot size.

A notable feature of the price results is the decreasing importance of overall 
square footage in determining sales prices. The results strongly suggest that the 
value of a buildable parcel of land has increased dramatically over the period of the 
data. This may be seen informally by comparing the price of a typical house in 1988 
with one in 2004. The estimated mean price of a typical house is $310,031 in 1988 
(with a standard error of $549) and is $495,308 by 2004 (with a standard error of 
$924). In contrast, as shown in Figure 5b, the marginal price of an additional square 
foot is almost the same in the two years: $131.15 in 1988 (with a standard error 
of $1.30) versus $141.84 in 2004 (with a standard error of $1.62), suggesting that 
appreciation in the value of land is the dominant factor. This is consistent with the 
results found in Glaeser, Gyourko, and Saks (2005).

Given that increases in the value of buildable parcels is driving housing-price 
increases, it is interesting to compare the time trend in Figure 3, panel B, with that in 
Figure 4, panel B. This comparison shows that the size of housing and the price of a 
typical house are correlated. As the price of a typical house controls for house size, 
this suggests that parcel owners build larger houses as the price of land gets bid up.

B. Variable Cost Regression

In the second stage, I recover the parameters of the variable cost function by esti-
mating (11) where all the parameters on the left-hand side of (11) are known from 
the price regressions.

Panel A. Across tracts Panel B. Over time
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Figure 5. Marginal Price of Square Footage in a Typical House

Notes: Figure 5, panel A, plots a kernel density estimate of the distribution across census tracts of the marginal price 
of square footage. The marginal price is calculated for a new house with 1,670 square feet of living space and a lot 
size of 6,800 square feet. 1,670 and 6,800 correspond to the sample means for house size and lot size, respectively. 
The marginal price for each census tract is an average of the yearly marginal prices between 1988 and 2004. Figure 
5, panel B, plots the time trend of the marginal price, where the marginal price for each year is an average of the 
census tract marginal prices. All prices are in year-2000 dollars.
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Before presenting the results, it is worthwhile considering how the variation in 
the marginal revenue of adding square footage over neighborhoods and time helps 
identify the cost coefficients. For example, if the return to square footage increases 
(falls) through time, we would expect the square footage of new construction to 
increase (fall). The extent to which the square footage of new construction changes 
with price changes, either across tracts or through time, will identify the cost pat-
terns. Size does indeed change as returns increase, as can be seen by comparing 
Figure 3, panel B (which shows the time trend in mean square footage in new con-
struction) with Figure 5, panel B (which shows the time trend in the marginal price 
of square foot). The size of observed changes in size relative to changes in marginal 
price is what identifies the time trend in variable costs.

Figure 6, panel A, illustrates the distribution over tracts in estimates of cost per 
square foot and Figure 6, panel B, shows the time trend in cost per square foot. The 
estimated mean cost per square foot is $126.13 (with a standard error of $0.36). As 
the approach to identifying costs is different here from previous research, it is not 
completely straightforward to compare results. My variable cost estimates include 
any costs that increase as house size increases. In addition to raw building supplies 
and labor, this could also include any additional costs imposed by regulation or local 
opposition to building that increase with house size. As such, these costs could be 
higher than costs estimated from physical costs alone.

Comparing the cost results found here with the R.S. Means Company cost data 
used in Gyourko and Saiz (2006) provides an indication of the external validity 
of these variable cost estimates. R.S. Means is a data provider and consultant to 
the home building industry that estimates construction costs (including materials 
and labor) for different styles and sizes of housing. In particular, the R.S. Means 
data reveal the cost per square foot of building “Economy,” “Average,” “Custom,” 
and “Luxury” houses in the Bay Area as $74, $98, $127, and $151, respectively in 
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Figure 6. Cost per Square Foot

Notes: Figure 6, panel A, plots a kernel density estimate of the distribution across census tracts of cost per square 
foot. The cost for each census tract is an average of the yearly costs between 1988 and 2004. Figure 6, panel B, 
plots the time trend of cost per square foot, where the cost for each year is an average of the census tract costs. All 
prices are in year-2000 dollars.
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2004.17 The median cost per square foot in 2004 estimated by the structural model 
is $111.56 (with a standard error of $1.48) and the interquartile range is $105.60 to 
$118.37 (with associated standard errors of $1.39 and $1.56), suggesting that the 
model’s estimates match closely with the industry data.

An important difference between the results here and the R.S. Means cost data 
used in previous literature is that I allow cost per square foot to vary within a metro-
politan area. Physical construction costs for the same product are unlikely to differ 
within the Bay Area. However, the quality of house will likely vary from tract to 
tract. That is, neighborhoods can differ in two ways: they may have different ameni-
ties, but they also may have different prices because of the mean quality of construc-
tion. Both factors may drive price differences. For construction costs, however, only 
the quality of construction matters. The underlying assumption is that the quality of 
square foot is homogeneous within a tract, but can vary across tracts.

Finally, as shown in Figure 6, panel B, the time pattern of mean tract costs, which 
comes from the common time trend, suggests that variable costs are pro-cyclical, 
falling by approximately 25 percent following a downturn in construction levels 
around 2000. Variable costs are a little lower overall at the end of the time period 
compared with the beginning, a feature that matches closely what is found in the 
R.S. Means data. However, the overall volatility of variable costs is an interesting 
result, as it is higher than that found in previous work that uses construction industry 
data. However, the sensitivity of costs to construction levels in previous literature, 
such as Wheaton and Simonton (2007) and Gyourko and Saiz (2006) was based of 
cross-sectional variation in construction and not the within-metropolitan time-series 
variation used here.

C. Dynamic Discrete Choice Results

Step One—Conditional Choice and Transition Probabilities.—The first step of 
the dynamic discrete choice estimation involves estimating transition probabilities 
for costs and prices as well as flexible conditional choice probabilities. The online 
Appendix provides the autoregressive coefficients for prices and costs. The condi-
tional choice probability estimation results (not shown) capture in a flexible way 
that the probability of construction is increasing in prices, falling in costs, and dif-
fers significantly across neighborhoods.

Step Two—Structural Parameters.—The remaining structural parameters are the 
discount parameter, ​β​ , the scale of the Type 1 Extreme Value error, ​​σ​ϵ​​​ , and the coun-
ty-by-year effects on fixed costs. The discount parameter, ​β​, is set at 0.95 and the 
other parameters are estimated via maximum likelihood.

As the profit function is measured in dollars, the scale of the extreme value error, ​​
σ​ϵ​​​ , is identified and is estimated at $35,660 (with a standard error of $8,883). Using 

17 These numbers are derived using the Residential Cost Data, 2005 and Means Construction Cost Indexes, 
January 2005. For each of the four categories, I calculate the cost of building as the average cost of a 1,600 square 
foot home with an unfinished basement, where the average is taken over siding type and city within the Bay Area. 
The R.S. Means deflator is used to get the figures for 2004. See Gyourko and Saiz (2006) for a detailed discussion 
of the R.S. Means data. 
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the properties of the Type 1 Extreme Value distribution, this yields an estimated 
standard deviation of the error equal to ​​σ​ϵ​​ ⋅ π/​√ 

_
 6 ​ = $45,735​. Given the mean 

($332,884) and standard deviation ($162,516) of observed house prices in the data, 
the size of the error scale suggests the model fits the data quite well.

The fixed costs are allowed to vary at the county-by-year level and, as shown 
in (15), the coefficients on a set of county ​×​ year dummies will be estimates of  
​(β​E​t​​ ​δ​ct+1​​ − ​δ​ct​​ )​. The fixed costs reflect any components of costs not captured by 
the variable costs. As such, they reflect the physical costs of construction that do 
not vary with house size. In addition, they also capture the regulatory environment.

It is worthwhile considering what patterns in the data identify the fixed cost 
parameters. Estimates of prices, variable costs, expected future prices, and expected 
future variable costs are treated as data at this stage. The parameters reflecting the 
expected growth rate of fixed costs are chosen to best explain observed develop-
ment patterns at the county-year level. For example, if in a given county-year, we 
observe a small difference between prices and variable costs and a large difference 
between expected future prices and expected future variable costs, this would sug-
gest that delaying development is optimal in the absence of time-varying fixed costs. 
However, if development is actually high, this will identify an expected growth in 
fixed costs. Similarly, if development rates are low in that county-year, this will 
identify small or negative expected growth in fixed costs.

Figure 7 presents the estimates of ​β ​E​t​​ ​δ​ct+1​​ − ​δ​ct​​​ for each of the six core coun-
ties in the Bay Area for 1989–2004. The results show moderate cross-sectional but 
large time-series variation in the expected growth of fixed costs. Expectations about 
fixed costs are strongly pro-cyclical. For example, in San Mateo in 1992, costs are 
$30,545 (with a standard error of $6,116) higher than the discounted value of the 
expected costs in 1993. As prices boom later in the sample period, this reverses. In 
2004, parcel owners expect costs to rise substantially—discounted expected costs 
in San Mateo for 2005 exceed 2004 costs by $23,911 (with a standard error of 
$5,106). The cost changes are sufficiently high that in boom periods the expected 
discounted value of next period’s costs significantly exceeds current period costs. 
This smooths construction levels and helps explain the observed construction vol-
atility levels. Interestingly, growth in fixed costs flattens out (or falls) after 2001, 
which corresponds with the period of falling construction levels in the Bay Area 
that is shown in Figure 3, panel A. The estimates are relatively precisely estimated, 
which can be seen in the online Appendix where the estimates are shown with 95 
percent confidence intervals.

Different explanations could be offered as to why these fixed costs rise in boom 
times. Contractors may become more difficult or more expensive to hire in a boom. 
Another explanation is that regulatory factors are more binding in boom times. For 
example, the demand for permits may exceed what a municipality is capable of 
supplying during a construction boom. The fixed costs capture the probability that 
a permit may not be issued. It makes sense that this probability should increase in 
boom times when demand for permits is high. Similarly, this probability may vary 
across counties, helping explain the cross-sectional variation in fixed costs.

An insight from these costs results is that the pro-cyclicality of costs discourages 
landowners from building at the peak of prices and consequently that predictable 



262	 AMERICAN ECONOMIC JOURNAL: ECONOMIC POLICY� NOVEMBER 2018

trends in costs reduce construction volatility. A naïve model, which ignored expec-
tations over cost trends, would predict very high levels of construction volatility. 
In the extreme case where prices were perfectly predictable, costs were constant, 
and discounting of future profits were low, we would expect to see construction 
occur only at the peak of prices. In the data, a sizable amount of construction occurs 
in the mid-to-late-1990s, when prices are much lower than owners would have 
received in expectation had they waited to build. This is a puzzling fact if one is 
not considering expectations about cost changes and a fact that cannot be addressed 
using models that focus exclusively on the role of prices in determining new supply. 
However, this fact can be addressed using the framework laid out here; results indi-
cate that expectations of rising costs discourage landowners from waiting until the 
peak of prices to build, as waiting for higher prices also involves waiting for higher 
costs. Consequently, pro-cyclical costs reduce construction volatility. Importantly, 
the observed levels of volatility can only be explained empirically by including 
fixed-cost trends—the discount factor, prices, and variable costs are not enough.18

Given the role cost patterns play in determining construction volatility, it is 
noteworthy that both measures of costs are, broadly speaking, pro-cyclical. This is  
interesting as variable costs are identified by variation in the size of construction 
and the growth in fixed costs are identified by variation in the propensity to develop.

18 A potential alternative explanation for this observed pattern is that if the time required to build is sufficiently 
long relative to the typical cycle of prices, it would make sense for parcel owners to begin building early in the price 
cycle. Empirical evidence does not support this alternative explanation. According to figures from the Census of 
Construction, 91 percent of construction in the West Census Region is completed within 12 months, a very short 
period when compared with the length of the typical price cycle. See Coulson (1999) for an analysis of the relation-
ship between starts, completions, and housing inventory. 
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Note: Figure 7 shows the county- and year-specific estimates of β​​E​t​​​ ​​δ​ct+1​​ ​− ​​δ​ct​​​, i.e., the difference between the dis-
counted expected one-year-ahead fixed costs and current fixed costs.
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VI.  Implications for Housing Supply

The estimates presented in Section V can be used to provide an important eco-
nomic insight in regards to our understanding of housing markets: forward-looking 
behavior substantially reduces the housing-supply elasticity. In addition, this effect 
is particularly prevalent during boom times when land prices and house prices are 
rapidly increasing.

To illustrate the impact of price increases on the decision to build, I use the 
model to simulate year-specific contemporaneous development elasticities, i.e., the 
percentage change in the development rate in a given year associated with a per-
centage change in price in that year. This elasticity is calculated as 100 times the 
simulated percentage change in total development for a 1 percent change in price, 
where total development is given by the sum of the development probabilities for 
all parcels making development decisions in that year. The formula for this elastic-
ity is given by

(16)	​​ elasticity​t​​  =  100 × ​ 
​∑ n=1​ 

​N​d, t​​ ​​ ​P​1​​ (​Ω​ njt​ ′ ​ )  − ​∑ n=1​ 
​N​d, t​​ ​​ ​P​1​​ (​Ω​njt​​)   __________________________  

​∑ n=1​ 
​N​d, t​​ ​​ ​P​1​​ (​Ω​njt​​)

 ​ ​,

where ​​N​d, t​​​ is the observed number of development decisions in year ​t​ and ​​Ω​ njt​ ′  ​​ is 
equal to the vector ​​Ω​njt​​​ , but with the price used in ​​Ω​ njt​ ′  ​​ set to ​1.01​ multiplied by the 
baseline price used in ​​Ω​njt​​​. The probability of building, ​​P​1​​ ( ⋅ )​ , is calculated using 
(14) and (15).

This development elasticity is a key determinant of the overall housing-supply 
elasticity and captures the effects of a change in price on both contemporaneous 
profits and expectations over future profits. The overall housing supply elasticity is 
commonly estimated in the literature and captures the percentage change in the total 
quantity of developed land in response to a change in price. As discussed in Mayer 
and Somerville (2000), we would expect the development elasticity to be much 
higher than the supply elasticity.

As I estimate a dynamic model of individual landowner behavior, I can distin-
guish between the impact of current prices on current profits and the impact of 
current prices on expected future profits. To do this, I decompose these effects 
by resimulating the development elasticity in (16), but where the change in price 
only affects current profits. That is, I hold constant expected future profits (i.e., ​​
∫  ​ 

 ​​(​​ 
_

 P ​​nt+1​​ − ​​ ‾ VC ​​nt+1​​ − ​σ​ε​​ log [​P​1​​ (​Ω​njt+1​​) ]) q(​Ω​njt+1​​|​Ω​njt​​) d ​Ω​njt+1​​​) when calculating 
the relative profitability of building in (15).

These two elasticities are shown in Figure 8. The first result to note is that 
the counterfactual, constant-future-profits elasticity is considerably larger than 
the estimated-model elasticity. The differences are statistically significant (the 
95 percent confidence intervals are shown in the online Appendix) and show that 
forward-looking behavior substantially reduces the responsiveness of landown-
ers to price changes. This occurs because while rising prices make building today 
more attractive, they also make waiting more attractive, thus reducing landowners 
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responsiveness to price. Driving this result is the effort of landowners to “time” the 
market, i.e., landowners are choosing when to build rather than if to build.19

The second result to note is that the difference between the two elasticities varies 
quite substantially over time. The elasticities are close to one another during the 
slump in housing prices observed in the mid 1990s and are much farther apart during 
the boom observed at the end of the period. This indicates that forward-looking 
behavior plays a considerably larger role in lowering the development elasticity 
when the market is hot and prices are high. We see a greater difference in boom 
times for a number of reasons. The underlying value of waiting is higher when 
parcel owners predict continuing price increases, which makes timing the market 
an important factor during boom times. Also, development is more likely to be prof-
itable when prices are high, so timing the market (versus waiting for the first profit-
able opportunity) becomes more relevant then.

Understanding the factors that determine the elasticity of housing supply is 
valuable given the well-documented relationship between housing-supply elastic-
ities and housing-price volatility. For example, Glaeser, Gyourko, and Saiz (2008) 

19 These elasticities are contemporaneous elasticities. Alternatively, one could pick a given year and show the 
development rate in subsequent years corresponding to the impulse response from the baseline-year price increase. 
As long as expected future prices are lower in the constant-expectations case, the constant-future-profits develop-
ment rate will be higher. This logic applies to development rates and not quantities, so that a higher development 
rate for a number of years would result in a lower stock of parcels against which the development rate applies. 

Figure 8. Year-Specific Development Elasticities: 1989–2004

Notes: The development elasticity is calculated as the percentage change in the development rate associated with a 
1 percent change in house prices, where the change in price also affects expectations about future profits. The coun-
terfactual, constant-future-profits development elasticity is calculated as the percentage change in the development 
rate associated with a 1 percent change in house prices, where expectations about future profits are held constant.

1988 1990 1992 1994 1996

Year

1998 2000 2002 2004
0

5

10

15

20

 E
la

st
ic

ity

Development elasticity

Development elasticity—Constant future profits



VOL. 10 NO. 4� 265MURPHY: A DYNAMIC MODEL OF HOUSING SUPPLY

find that cities with lower supply elasticities have more volatile price cycles.20 The 
added insight here is that forward-looking behavior reduces the supply elasticity 
(especially in hot markets) and could therefore contribute to greater price volatility.

VII.  Conclusion

The importance of the housing market to the overall economy has been well-docu-
mented, but the literature on housing supply is surprisingly small. Short-run volatility 
in both prices and construction levels has significant welfare implications in terms of a 
typical household’s asset portfolio and in terms of industry-wide employment effects.

Understanding the way that economic primitives influence individual behavior 
is crucial in explaining the aggregate patterns of construction and prices observed 
in macro data. To that end, I estimate a model of individual parcel owners’ devel-
opment decisions. By combining the continuous choice of what (size) to build with 
the dynamic discrete-choice of when to build, I estimate the parameters of the profit 
function at a fine level of geography and still retain computational tractability.

Results indicate that changes in overall housing prices are driven by changes in 
the value of the right-to-build. Results describing the variable costs of construction 
(which are validated with input cost data) and the fixed costs of construction indi-
cate significant volatility of physical and latent costs. An analysis of these results 
suggests that pro-cyclical cost environments provide an incentive for some land-
owners to build before price peaks, as waiting for higher prices involves also waiting 
for higher costs. Results also indicate that forward-looking behavior substantially 
reduces the housing supply elasticity.
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