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A DYNAMIC MODEL OF DEMAND FOR HOUSES
AND NEIGHBORHOODS

BY PATRICK BAYER, ROBERT MCMILLAN,
ALVIN MURPHY, AND CHRISTOPHER TIMMINS1

This paper develops a dynamic model of neighborhood choice along with a com-
putationally light multi-step estimator. The proposed empirical framework captures
observed and unobserved preference heterogeneity across households and locations in
a flexible way. We estimate the model using a newly assembled data set that matches
demographic information from mortgage applications to the universe of housing trans-
actions in the San Francisco Bay Area from 1994 to 2004. The results provide the
first estimates of the marginal willingness to pay for several non-marketed amenities—
neighborhood air pollution, violent crime, and racial composition—in a dynamic frame-
work. Comparing these estimates with those from a static version of the model high-
lights several important biases that arise when dynamic considerations are ignored.

KEYWORDS: Neighborhood choice, dynamic discrete choice, housing demand, he-
donic valuation, amenities, unobserved heterogeneity, residential sorting.

1. INTRODUCTION

MODELS OF RESIDENTIAL SORTING AND HEDONIC EQUILIBRIUM PROVIDE the
basis for several longstanding literatures in economics. A large body of theo-
retical research in public and urban economics, for example, has used these
models to characterize the equilibrium structure of cities and the provision
of public goods in a system of political jurisdictions.2 Furthermore, empirical
researchers have developed related estimable models in order to provide the-
oretically consistent estimates of household willingness to pay for a wide va-
riety of non-marketed local goods (e.g., education, crime, and environmental
amenities)3 and as a tool for simulating how counterfactual policies would af-

1This paper is a revised version of NBER Working Paper 17250. We would like to thank Kelly
Bishop, Morris Davis, Ed Glaeser, Phil Haile, Aviv Nevo, participants at the Econometric So-
ciety Summer Meetings, NBER Summer Institute, Regional Science Annual Meetings, Stan-
ford Institute for Theoretical Economics, and seminar participants at the University of Arizona,
Duke, UBC, Georgetown, Minnesota, NYU, Northwestern, Ohio State, Queen’s, Rochester, St.
Louis Federal Reserve, and Yale for many valuable suggestions. The co-editor and three anony-
mous referees provided numerous comments that have helped us improve the paper significantly.
Thanks to Elliot Anenberg for excellent research assistance. Financial support from the National
Science Foundation and SSHRC is gratefully acknowledged. All remaining errors are our own.

2Theoretical contributions to the residential sorting literature include papers by Ellickson
(1971), Epple, Filimon, and Romer (1984), Epple and Romer (1991), Epple and Romano (1998),
and Nechyba (1999, 2000). Related contributions to the literature analyzing hedonic equilibrium
include Rosen (1974), Epple (1987), and Ekeland, Heckman, and Nesheim (2004).

3Empirical sorting papers include Epple and Sieg (1999), Bayer, Ferreira, and McMillan
(2007), Ferreyra (2007), and Kuminoff (2012); for empirical analyses of hedonic equilibrium,
see Bajari and Kahn (2005), Kuminoff and Jarrah (2010), and Bishop and Timmins (2011).
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fect the housing market equilibrium, residential sorting, and, ultimately, house-
hold welfare.4

Despite making progress along many important dimensions, nearly all of the
models developed and estimated in these literatures have adopted a static ap-
proach that assumes agents are not forward-looking. This has raised a concern,
shared by critics and practitioners alike,5 that empirical findings from static
models might be subject to biases related to the inherently dynamic nature of
household location decisions.6

That location decisions are dynamic follows directly from a number of im-
portant features of the housing market: (i) large transactions costs that make
moves relatively rare, (ii) changing household tastes and needs over the life-
cycle, and (iii) evolving local amenities and housing prices that give neigh-
borhoods a dynamic character. Despite housing markets having these obvi-
ous characteristics, estimating dynamic models of location choice has proven
difficult for two primary reasons. The first concerns data: the estimation of
sorting models typically requires the matching of a large sample of households
along with their characteristics to the location and features of their housing
choices. Given this core data need, most papers in the prior literature have
used data from the decennial Census, which provides great detail about large
cross-sections of households but very little information about the dynamics
of decision-making or the continued evolution of households and neighbor-
hoods.7

The second factor that makes estimating dynamic models difficult is the high
dimensionality of the state space required to characterize the evolution of a
system of neighborhoods (or cities). The resulting curse of dimensionality has
made it exceedingly difficult to compute a reasonable dynamic model of resi-
dential location decisions that takes account of the heterogeneous and evolving
nature of both households and neighborhoods.

The main goal of this paper is to provide a new approach for estimating a dy-
namic model of demand for houses and neighborhoods that is computationally
tractable. The starting point for our analysis is a newly assembled data set that
links information about buyers and sellers to the universe of housing trans-
actions in the San Francisco metropolitan area over a period of 11 years. In

4See, for example, Sieg, Smith, Banzhaf, and Walsh (2004), Epple, Romano, and Sieg (2006),
Walsh (2007), and Bayer, McMillan, and Rueben (2011).

5The dynamic nature of location decisions is often acknowledged by researchers and has, for
instance, prompted a debate as to whether all households or just recent movers should be used
when estimating preferences for amenities. See the discussion in Kahn (1995), Cragg and Kahn
(1997), or Bayer, Keohane, and Timmins (2009).

6Static models are also limited in that they cannot distinguish how households value permanent
versus temporary changes in amenities.

7Recent papers by Epple, Romano, and Sieg (2012) and Caetano (2010) have made useful
advances in the estimation of dynamic models, exploiting the limited dynamic information in
the Census to shed new light on household dynamics over the life-cycle, assuming a stationary
environment with respect to neighborhood and population evolutions.
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addition to providing precise information about housing structure (e.g., square
footage, year built, lot size, transaction price) and house location, a key fea-
ture of these data is that they provide important demographic and economic
information concerning the buyers and sellers themselves, which permits us to
follow households over time as they move within the metropolitan area.

With these data in hand, we develop a model of neighborhood choice in a
dynamic setting, along with a multi-step estimation approach that is computa-
tionally light. This approach, which combines and extends the insights of Rust
(1987), Berry (1994), and Hotz and Miller (1993), allows both the observed and
unobserved features of each neighborhood to evolve over time in a completely
flexible manner. It makes use of information about neighborhood choices and
the timing of moves to recover: (i) preferences for housing and neighborhood
attributes, incorporating unobserved preference heterogeneity, (ii) aspects of
demand related to the performance of housing as a financial asset (e.g., ex-
pected appreciation, volatility), and (iii) moving costs.8

Our paper is related to another important strand of research, namely, re-
cent advances in the industrial organization literature on dynamic demand
for durable and storable goods.9 Important early contributions to this litera-
ture have considered household demand for storable goods (Hendel and Nevo
(2006)) and durable goods in markets where products are improving rapidly
over time (see Gowrisankaran and Rysman (2012) and Melnikov (2013)). That
literature has emphasized a number of important biases when ignoring dy-
namic considerations in demand estimation that arise because households sub-
stitute intertemporally or because early adopters of new technology have sys-
tematically stronger preferences for the improved features that accompany it.10

Our model and estimator build upon the durable demand literature in sev-
eral ways. First, motivated by the fact that housing constitutes two-thirds of
the typical homeowner’s financial portfolio, we explicitly model housing as an
asset and allow each household’s wealth to evolve endogenously. Households
in our model anticipate selling their homes at some point in the future and
thus explicitly consider the expected evolution of neighborhood amenities and
housing prices when deciding where and when to purchase (or sell) their house.

Second, we develop a novel approach for identifying the marginal utility of
consumption, which has long been a thorny issue in the literature on demand
estimation in both industrial organization and urban economics. The main
challenge faced by researchers stems from the strong correlation between a

8In an important recent contribution to the sorting literature, Kennan and Walker (2011) mod-
eled inter-state migration decisions by forward-looking agents, focusing on the role of expected
income in a job-search framework. Kennan and Walker’s model does not consider housing mar-
kets; we focus on housing market dynamics within a single market.

9See Aguirregabiria and Nevo (2013) for an excellent review of this literature.
10The paper by Schiraldi (2011) is the most similar research to ours in this literature, develop-

ing a model of automobile demand that extends Gowrisankaran and Rysman (2012) to account
for the possibility of resale in a flexible way.
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product’s price and its unobserved quality. Instruments are hard to come by in
this setting. In our application, we exploit the fact that households face a mon-
etary trade-off both in the standard sense of deciding which product (neighbor-
hood) to purchase but also in terms of deciding when to move. Here, we take
advantage of the fact that realtor fees during our sample period were quite
uniform (6 percent of the house value) in order to identify the marginal utility
of consumption when estimating each resident’s move–stay decision.

Third, we relax the index sufficiency assumption (see Hendel and Nevo
(2006) and Melnikov (2013)) that has become a common feature of the dy-
namic demand literature. This assumption helps to deal with the computa-
tional challenges posed by the large state space typically arising in models of
dynamic demand. Instead of treating the logit inclusive value as a sufficient
statistic for predicting future continuation values, we construct the continu-
ation value from predicted future lifetime utilities, which depend on the state
space (consisting of current lifetime utilities and neighborhood characteristics)
in a flexible manner.

We estimate a version of the model that allows both for observed household
preference heterogeneity on the basis of race, income, and wealth, and also for
unobserved preference heterogeneity. We then use the estimated utility pa-
rameters to value marginal changes in non-marketed amenities, a central area
of inquiry in public and urban economics. In particular, we estimate the way
that neighborhood racial composition, violent crime, and air pollution affect
the flow utility derived from a particular residential choice.

The findings from this exercise indicate that the preference estimates de-
rived from our dynamic approach differ substantially from estimates derived
from a comparable static demand model and from a dynamic model that ex-
cludes unobserved heterogeneity. In particular, we find that the static model
understates marginal willingness to pay (‘MWTP’) to avoid pollution and
crime; in terms of neighborhood racial composition, the static model overstates
MWTP for low-income households and understates MWTP for high-income
households. When estimating a dynamic model without unobserved hetero-
geneity, we find that this significantly understates willingness to pay for crime
and neighborhood race.

While several systematic factors are relevant when explaining these pat-
terns, a primary explanation involves the time-series properties of the respec-
tive amenities. In the case of a mean-reverting disamenity such as crime, a
static demand model will incorrectly interpret the justifiable downweighting by
households of a high value today as a low static valuation, thereby understating
willingness-to-pay for the amenity. The reverse is true for an amenity such as
neighborhood race, which exhibits positive momentum in our sample: a high
value of the amenity today predicts an even higher value in future, so house-
holds will appear to overweight current values of the amenity, seen through the
lens of a static model. We discuss several other potential sources of bias below.

Beyond the current application, the model and estimation method that we
propose provide a foundation for addressing a wide set of dynamic issues in
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housing markets and cities. These include, for instance, the analysis of the mi-
crodynamics of residential segregation and gentrification within metropolitan
areas.11 In addition, the kinds of transactions data required to estimate the
model have become increasingly available for cities in the United States and
elsewhere in recent years. Together, these make further exploration of dynamic
issues ever more viable.

The remainder of the paper proceeds as follows: Section 2 describes the
main components of our data set and the matching procedure used to con-
struct it. Our model and estimation strategy are presented in Sections 3 and 4,
and the estimates are presented in Section 5. Relative to our benchmark dy-
namic model that incorporates unobserved heterogeneity, Section 6 discusses
the implications of both estimating static demand models when agents are ac-
tually behaving dynamically and ignoring individual unobserved heterogeneity.
Section 7 concludes.

2. DATA

In this section, we describe a new data set that we have assembled, merging
information about buyers and sellers with the universe of housing transactions
in the San Francisco metropolitan area. We discuss the data sources and also
demonstrate that the merge results in a high-quality and representative data
set based on multiple diagnostic tests.

The data set that we construct is drawn from two main sources. The first
comes from DataQuick Information Services, a national real estate data com-
pany, and provides information about each housing unit sold in the core coun-
ties of the Bay Area (San Francisco, Marin, San Mateo, Alameda, Contra
Costa, and Santa Clara) between 1994 and 2004. The buyers’ and sellers’ names
are provided, along with the transaction price, exact street address, square
footage, year built, lot size, number of rooms, number of bathrooms, number of
units in building, and many other characteristics.12 A key feature of this trans-
actions data set is that it also includes information about the buyer’s mortgage
(including the loan amount and lender’s name for all loans). It is this mortgage
information that allows us to link the transactions data to information about
buyers (and many sellers).

The source of the economic and demographic information on buyers and
sellers is the data set covering mortgage applications published in accordance
with the Home Mortgage Disclosure Act (HMDA), which was enacted by

11Recent theoretical research on aspects of the dynamic microfoundations of housing markets
by Ortalo-Magné and Rady (2002, 2006, 2008) and Bajari, Benkard, and Krainer (2005) raises a
number of additional empirical questions that could be addressed using this framework.

12By comparison, the list of housing characteristics is considerably more detailed than that
available in Census microdata.
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Congress in 1975 and is implemented by the Federal Reserve Board’s Reg-
ulation C.13 The HMDA data provide the race, income, and gender of the
buyer/applicant, as well as the mortgage loan amount, mortgage lender’s name,
and the census tract where the property is located.

We merge the two data sets on the basis of the following variables: census
tract, loan amount, date, and lender name. Using this procedure and keeping
only high-quality matches, we obtain a unique match for approximately 55 per-
cent of sales. Because the original transactions data set includes the full names
of buyers and sellers, we are also able to merge demographic and economic
information about sellers into the data set, provided a seller bought another
house within the metropolitan area and a unique match with HMDA was ob-
tained for that house.14

To ensure that our HMDA/DataQuick matching procedure is valid, we
conduct several diagnostic tests. Using public-access Census microdata from
IPUMS, we first calculate the distributions of income and race of those who
purchased a house in 1999 in each of the six Bay Area counties. We compare
these distributions to the distributions in our merged data set in Table A.I in
Appendix A. As can be seen, the numbers match almost perfectly in each of
the six counties, indicating that the matched buyers are representative of all
new buyers. Table A.II provides a second diagnostic check, relating to the rep-
resentativeness of the merged data set in terms of housing characteristics. We
report sample statistics for a subset of the house-level variables taken from the
original data set that includes the complete universe of transactions, as well as
sample statistics for the merged data set.15 A comparison of the two samples
suggests that the set of houses for which we have a unique loan record from
HMDA is representative of the universe of houses. Overall, our diagnostic tests
provide strong evidence supporting the validity of our matching procedure.

In addition to merged data on households and the houses they choose, the
estimation routine discussed below also requires that we follow households
through time so that we can determine both when they buy and sell a property
(if a sale occurs). Since the data set provides a complete census of all house
sales, with a unique code for every property, it is straightforward to determine

13The purpose of the Act is “to provide public loan data that can be used to determine whether
financial institutions are serving the housing needs of their communities and whether public offi-
cials are distributing public-sector investments so as to attract private investment to areas where
it is needed.” Another purpose is to identify any possible discriminatory lending patterns. (See
http://www.ffiec.gov/hmda for more details.)

14We can locate the seller’s previous purchase in the data in 30% of cases. Combined with
the requirement that the previous purchase was matched with HMDA means that we have seller
demographic information for 20% of all transactions.

15To compute Table A.II, we drop outlying observations where reported sales price—in year-
2000 dollars—is above the 99th or below the 1st percentile of sales prices. We also drop houses
with reported values of lot size, square footage, number of bedrooms, and number of rooms
higher (or lower) than their respective maximum (or minimum) reported in Table A.II.

http://www.ffiec.gov/hmda
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if a household moves. And if an individual buys a house in a given period, we
know that he/she will stay there until we see that house sell again.16

The unit of geography in the model discussed below is a neighborhood,
where we define neighborhoods by merging nearby census tracts until there are
approximately 10,000 housing units in each neighborhood.17 We drop a number
of neighborhoods that have fewer than six sales in any year between 1994 and
2004 or where the ratio of maximum to minimum annual sales exceeds five,18

leaving us with 218 neighborhoods in total. The corresponding neighborhood
boundaries are shown in Figure 1, along with the county names.

Table I presents summary statistics for the merged data that we use for es-
timation. We report summary statistics for both household and neighborhood
characteristics.

The data provide information on three household-level characteristics: in-
come, race, and housing-related wealth. Our measure of wealth is the differ-
ence between the household’s current house value and the initial mortgage
amount. Current house value is defined as the sales price in the year the house
was purchased and an imputed house value in subsequent years. The imputa-
tion uses the original house price and adjusts this according to an appreciation
index generated from a repeat sales analysis, with the appreciation index cal-
culated separately for each neighborhood.

In estimating the dynamic model below, we use a sample of white house-
holds with income and wealth less than $240,000, which constitutes just under
53 percent of all homebuyers in the data.19 We focus on this sample in order
to ensure that there are a reasonably large number of households of each ob-
servable type—defined on the basis of race, income, and wealth. The model
could also be estimated for black, Asian, or Hispanic households, but addi-
tional smoothing would likely be required to deal with some sparse portions
of the type-space. With these restrictions, our primary sample consists of over
220,000 observations. The sample mean household income is approximately
$107,000, with a standard deviation of $45,000. As income is only observed

16It is more difficult to determine where a household moves to, conditional on moving. The raw
data do not provide a unique household identifier; however, they do provide the name of both
the purchaser and the seller. We use the name information to create a household identifier by
looking for a house purchase in a window of time around a sale for which the purchaser’s name
(in the purchase) matches the seller’s name (in the sale). If we cannot find a new purchase within
a year on either side of the sale, we assume that the household has either left the Bay Area or
moved to a rental unit.

17The merging algorithm starts with the least populated census tract, and merges it together
with the nearest tract such that the combined population does not exceed 25,000. The algorithm
iterates until no possible combination of tracts would result in combined populations of less than
25,000. A population of 25,000 roughly corresponds to 10,000 housing units. The population and
geographic data for each census tract come from the 2000 Census.

18Specifically, we drop 35 neighborhoods, equivalent to 14 percent of neighborhoods but only
7 percent of sales.

19White households constitute 61 percent of all homebuyers in the data.
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FIGURE 1.—Appreciation rates by neighborhood.

when a household makes a purchase, we assume that income does not change
over time.

The neighborhood characteristics we use are mean house price, air quality
(ground-level ozone concentrations), violent crime rates, and the racial com-

TABLE I

SUMMARY STATISTICSa

Variable Obs. Mean Std. Dev. Min. Max.

Household Characteristics
Income 220,403 106�87 45�44 0�89 240�00
Down-payment 220,403 82�46 51�92 0�00 240�00
Sales price 220,403 382�86 163�70 98�53 1536�71
White 220,403 1 0 1 1
Year 220,403 1999�04 3�17 1994 2004

Neighborhood Characteristics
Percent white 2398 69�63 16�21 26�69 96�79
Violent crime 2398 453�67 247�02 46�03 2011�05
Ozone 2398 2�17 2�57 0�002 18�25
Sales price 2398 429�13 206�27 122�75 1792�01

aIncome, Down-payment, and Sale price are measured in $1000’s.
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position of home owners (percent white). We control for changing attributes
of the houses that sold when calculating time variation in each neighborhood’s
mean price.20

For air quality measures, we use annual data from the California Air Re-
sources Board (www.arb.ca.gov/adam/) that report readings from 37 monitors
in the Bay Area between 1994 and 2004. While several different measures
of ground-level ozone pollution are reported in these data, we use informa-
tion about the number of days each year that pollution exceeded the one-hour
state standard (i.e., 90 parts per billion) to construct specific measures for each
neighborhood centroid. In particular, we use the latitudes and longitudes of all
monitors to obtain a distance-weighted average of the number of ‘exceedances’
for each neighborhood.

Ozone is a convenient environmental disamenity to study in this context.
Unlike many other pollutants, geography and weather are largely responsible
for cross-sectional variation in ground-level ozone pollution. San Francisco,
Oakland, and San Jose all face heavy traffic congestion. However, wind pat-
terns mitigate much of the ozone pollution in San Francisco and Oakland,
while worsening it in San Jose; and mountains ringing the southern end of the
Bay Area block air flows and contribute to this effect.21 At the same time, fog
(which is especially prevalent in San Francisco) can lower temperatures and
block sunlight, preventing the formation of ozone.

In addition to the cross-sectional variation just described, there is also sig-
nificant variation in ozone pollution levels over time, much of which is due to a
variety of programs initiated after California passed its Clean Air Act of 1988.
Following several years of relatively low ozone pollution, the Bay Area expe-
rienced its worst year of air quality for a decade in 1995. In 1996, the vehicle
Buyback Program for cars manufactured in 1975 or before was implemented,
and this program contributed to the summer of 1997 being the cleanest season
since the early 1960s.22 While 1998 saw considerably more ozone pollution, the
remaining years of our sample returned to relatively low levels. There is no
reason to expect that any of these programs would have had special economic
consequences for housing prices in any specific part of the Bay Area, aside
from those operating through changing amenity values.

20To generate appreciation trends, we use the same repeat sales analysis as the one used to
impute individual house values. We regress log price on year and house dummies and create ap-
preciation measures from the coefficients on the year dummies; the regressions and associated
appreciation measures are estimated separately for every neighborhood. This procedure is effec-
tively a simplification of the method described in Case and Shiller (1989). The cross-sectional
variation in house prices is driven by differences in prices across neighborhoods averaged over all
years.

21The mountains on the eastern side of the Bay are similarly responsible for high levels of
pollution along the I-680 corridor in eastern Contra Costa and Alameda counties.

22Also relevant were the Lawn Mower Buyback and Clean Air Plan of 1997.

http://www.arb.ca.gov/adam/
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Data on violent crimes are taken from the RAND California data base.23

These figures represent the number of “crimes against people, including homi-
cide, forcible rape, robbery, and aggravated assault” per 100,000 residents and
are organized by city. The data describe crime rates for 80 cities in the Bay
Area between 1986 and 2008; and we impute crime rates at the centroid of
each neighborhood using a distance-weighted average of the crime rate in each
city. We focus our attention on violent (as opposed to property) crimes as they
are likely to be less subject to reporting error (see Gibbons (2004)). With that
in mind, it is possible that our measure of violent crime will, to some extent,
proxy for other sorts of crimes as well.

Crime rates in the Bay Area (and in many other parts of the United States)
fell dramatically over the course of the 1990s. In the Bay Area, this is particu-
larly evident in communities starting out with very high rates of violent crime
(e.g., East Palo Alto), whereas low crime areas (e.g., Palo Alto) saw virtually no
change in crime rates over the decade. In general, however, local crime rates
have tended to fluctuate in the short run (annually), and even over longer pe-
riods.

The time-series variation in amenities just described may give rise to biases
in static demand estimation, anticipating the application we develop in Sec-
tion 6. Both ground-level ozone and crime vary a great deal from year to year
and mean-revert over very short time horizons. Neighborhood racial composi-
tion, in contrast, is positively persistent, with any change in composition today
likely to persist into the future. If households anticipate either the mean rever-
sion or the persistence, their responses will reflect not only the current change
but also those expectations; and as a result, we would expect a static model
to return biased estimates when valuing these amenities. Regressions explor-
ing the time-series patterns of each (dis)amenity are shown in Table A.VI in
Appendix A.

The precision of our estimated model depends critically on the fact that rates
of change in amenities and house prices are not uniform across neighborhoods.
To illustrate the variation in the evolution of prices across regions of the Bay
Area, Figure 1 shows real house price appreciation by neighborhood from 1994
to 2004. The estimated price levels are derived separately for each neighbor-
hood using a repeat sales analysis in which the log of the sales price (in 2000
dollars) is regressed on a set of year fixed effects as well as house fixed effects.
The figure makes clear the significant differences across neighborhoods in real
house price growth over this time period.24

23http://ca.rand.org/stats/community/crimerate.html.
24Omitted neighborhoods in the study area are shaded white, as are the bordering counties.

http://ca.rand.org/stats/community/crimerate.html
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3. A DYNAMIC MODEL OF NEIGHBORHOOD CHOICE

Previous research modeling the process of household sorting across neigh-
borhoods has generally assumed a static environment.25 In developing a dy-
namic sorting model, we introduce the dynamics of the neighborhood choice
problem through two channels: wealth accumulation and moving costs. House-
holds have expectations about the appreciation of housing prices and may ra-
tionally choose a neighborhood that offers lower current-period utility in re-
turn for the increase in wealth associated with house price appreciation in that
neighborhood. Moving costs are the other component of the neighborhood
choice problem that induce forward-looking behavior: because households typ-
ically pay six percent of the value of their house in real estate agent fees, in
addition to the non-financial costs of moving, it becomes prohibitively costly
to re-optimize every period. As a result, households will naturally consider ex-
pectations about future utility streams when deciding where to live, making
trade-offs between current and future neighborhood attributes and therefore
choosing neighborhoods based in part on demographic or economic trends.

The model we present is one of homeowner behavior.26 Households are
treated as making a sequence of location decisions that maximize the dis-
counted sum of expected per-period utilities: formulated in a familiar dynamic
programming setup, a Bellman equation captures the determinants of the op-
timal choice.

In each period, every household chooses whether or not to move. If a house-
hold moves, it incurs a moving cost and then chooses the neighborhood that
yields the highest expected lifetime utility. The decision variable, di�t , denotes
both of the choices made by household i in period t, namely, (i) whether to
move, and (ii) where to move, conditional on deciding to move. If a household
decides to move, we denote that decision by di�t = j ∈ {0�1� � � � � J}, where j in-
dexes neighborhoods, J denotes the total number of neighborhoods in the Bay
Area, and 0 denotes the outside option. If a household decides not to move,
we denote that decision by di�t = J + 1.27

25See Epple and Sieg (1999), Ekeland, Heckman, and Nesheim (2004), Bajari and Kahn
(2005), Ferreyra (2007), and Bayer, McMillan, and Rueben (2011) for several recent examples.
Four exceptions are Kennan and Walker (2011) and Bishop (2012), who analyzed interregional
migration in the United States in a dynamic context, Bishop and Murphy (2011), who developed
and estimated a dynamic version of the Rosen (1974) model, and Murphy (2015), who examined
the role of dynamic behavior in the supply of new housing.

26We do not explicitly model the decision whether to rent or to own. We do, however, include
an outside option that includes moving from home ownership in the Bay Area to either a rental
property or a home outside the Bay Area.

27The number of choice options is therefore J+ 2. For a household who lived in neighborhood
j in t − 1, we distinguish between the choices of not moving (di�t = J + 1) and of moving to a
different house within neighborhood j (di�t = j), as there are a small number of observations for
which households make such within-neighborhood moves. To simplify notation, we do not use
a separate index for neighborhoods and choices. For choices j ∈ {0�1� � � � � J}, the household is
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The observed state variables at time t are Xj�t , Zi�t , and hi�t . Xj�t is a vec-
tor of characteristics that affect the per-period utility a household may receive
from living in neighborhood j ∈ {0�1� � � � � J}. For example, Xj�t may include the
price of housing and the quality of local attributes, such as air quality, crime, or
the neighborhood’s racial composition. Zi�t is a vector of characteristics of each
household that potentially determine the per-period utility from living in a par-
ticular neighborhood, as well as the costs associated with moving. This vector
may include such variables as income, wealth, or race. And hi�t ∈ {0�1� � � � � J}
denotes the neighborhood chosen in t − 1, including the outside option.

In addition to the decision variable, di�t , and the observable variables, Xj�t ,
Zi�t , and hi�t , the model incorporates three unobservable variables, gi, ξj�t , and
εi�j�t . Of these, gi represents the unobserved discrete type of the household;28

ξj�t represents unobserved neighborhood quality;29 and εi�j�t is an idiosyncratic
stochastic shock that determines the utility a household i receives from choos-
ing option j ∈ {0�1� � � � � J + 1} in period t.30 Let si�t denote the states Xt , ξt ,
Zi�t , hi�t , and gi, as well as any other information-set variables (such as lagged
characteristics) that help predict future neighborhood or household character-
istics.

The primitives of the model can be written (u�MC� q�β). Taking these in
turn, ui�j�t = u(Xj�t� ξj�t�Zi�t� gi� εi�j�t) is the per-period utility function, exclud-
ing any moving costs, capturing the utility that household i receives from liv-
ing in neighborhood j. MCi�t = MC(Zi�t�Xhi�t ) is the per-period moving cost
function, which is only paid when a household moves.31 We assume that mov-
ing costs, MCi�t , are not a function of where within the metropolitan area
the household moves to and are made up of two components: financial costs,
FMC(Xhi�t ), and psychological costs, PMC(Zi�t). The financial moving costs
are a function of the characteristics of the neighborhood the household is leav-
ing, Xhi�t , in order to capture the fact that realtor fees are proportional to the
value of the house one sells. The psychological costs are assumed to be a func-
tion of the observable characteristics, Zi�t . The full flow utility function, ad-
justing for moving costs in the event that they are incurred, is given by uMC

i�j�t .
The transition probabilities of the states are assumed to be Markovian and are

choosing to move to neighborhood j; for choice j = J + 1, the household is choosing to not move
and so to remain in the current neighborhood, which is in {0�1� � � � � J}.

28The unobserved type captures a household’s preferences for sub-regions of the Bay Area and
is discussed in greater detail in Section 4.3 below.

29We allow households to derive different levels of utility from unobserved neighborhood qual-
ity based on their observable demographic characteristics. In so doing, we differ from previous
work, such as Berry, Levinsohn, and Pakes (1995), in which all individuals have the same prefer-
ences for the unobserved choice characteristic.

30As the vector of idiosyncratic shocks contains J + 2 elements, a household who moves but
chooses to reside in the same neighborhood would receive a different draw for ε than if that
household had chosen not to move.

31We write Xhi�t using a slight abuse of notation, omitting the distinct ‘time’ subscript.
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given by q = q(si�t+1� εi�t+1|si�t� εi�t� di�t), where εi�t is the vector containing all
choices. Finally, β is the discount factor.

Each household is assumed to behave optimally in the sense that its actions
are taken to maximize lifetime expected utility. That is, the household’s prob-
lem is to make a sequence of residential location decisions, {di�t}, to maximize

E

[
T∑
r=t

βr−t
(
uMC(Xj�r� ξj�r�Zi�r� gi� εi�j�r� hi�r�Xhi�r )

)∣∣∣si�t� εi�t� di�t

]
�(1)

The optimal decision rule is given by d∗. Under the Markov structure of the
problem, this is only a function of the state variables, that is, di�t = d∗

i�t(si�t� εi�t).
When the sequence of decisions, {di�t}, is determined according to the opti-
mal decision rule, d∗, lifetime expected utility can be represented by the value
function, which can be broken into the flow utility at time t and the expected
sum of flow utilities from time t+1 onwards. This allows us to use the Bellman
equation to express the value function at time t as the maximum of the sum of
flow utility at time t and the discounted value function at time t+1. We assume
that the problem has an infinite horizon, allowing us to drop time subscripts on
the value function, V .32 Thus:

V (si�t� εi�t)= max
j

{
uMC
i�j�t +βE

[
V (si�t+1� εi�t+1)|si�t� εi�t� di�t = j

]}
�(2)

While equation (2) is a contraction mapping in V under certain technical as-
sumptions, V is a function of both the observed and unobserved state variables.
Therefore, we make a series of assumptions similar to those in Rust (1987) in
order to simplify the model.

ADDITIVE SEPARABILITY ASSUMPTION: We assume that the per-period util-
ity function has the additively separable decomposition:

uMC
i�j�t = u(Xj�t� ξj�t�Zi�t� gi)+ εi�j�t� if j = J + 1�(3)

uMC
i�j�t = u(Xj�t� ξj�t� Z̄i�t� gi)− PMC(Z̄i�t)+ εi�j�t� if j �= J + 1�

where we introduce the notation Z̄i�t = Z̄(Zi�t�Xhi�t ) to denote a household’s
new type if it chooses to move (i.e., j �= J + 1). Z̄i�t reflects the fact that wealth
(an element in Zi�t) will be reduced by the amount of the financial moving costs,
FMC(Xhi�t ). A household’s new type, Z̄i�t , is a function of its original attributes,
Zi�t , and the characteristics of its previous location, Xhi�t , as the housing price

32Assuming an infinite horizon implies that Vt(si�t � εi�t ) = V (si�t � εi�t ) and dt(si�t � εi�t ) =
d(si�t � εi�t ).
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level affects the size of real estate commissions.33 Writing the model in this way
allows us to draw a clear contrast between moving and staying and will make
our identification strategy more transparent later on.34

As can be seen from (3), if we ignore psychological moving costs and the
idiosyncratic shock and hold all else constant, the per-period utility of a house-
hold who stays in a given neighborhood j will be the same as the per-period
utility for a different household who moves to neighborhood j if the wealth of
the staying household equals the post-move wealth of the moving household.
In other words, Zi�t = Z̄i�t �⇒ u(Xj�t� ξj�t�Zi�t� gi) = u(Xj�t� ξj�t� Z̄i�t� gi).

CONDITIONAL INDEPENDENCE ASSUMPTION: The transition density for the
Markov process, q, factors as35

q(si�t+1� εi�t+1|si�t� εi�t� di�t)= qs(si�t+1|si�t� di�t)qε(εi�t+1)�(4)

This assumption involves a number of restrictions. Conditional on si�t and
di�t , the errors εi�j�t have no predictive power regarding future states si�t+1. Sec-
ond, the probability density of εi�t+1 does not depend on any current states.

For our empirical analysis, we further assume that εi�j�t is distributed i.i.d.,
Type I Extreme Value. This allows us to define the choice-specific value func-
tion, vMC

j (si�t), as

vMC
j (si�t)= uMC

i�j�t +βE

[
log

(
J+1∑
k=0

exp
(
vMC
k (si�t+1)

))∣∣∣si�t� di�t = j

]
�(5)

where

log

(
J+1∑
k=1

exp
(
vMC
k (si�t)

)) = Eε

[
V (si�t� εi�t)

]
= Eε

[
max

k

[
vMC
k (si�t)+ εi�k�t

]]
�

Similarly to per-period utility, we can divide the full choice-specific value func-
tion into (i) the lifetime expected utility of choosing neighborhood j exclud-
ing psychological moving costs, and (ii) psychological moving costs. These two

33For example, if Zi�t = (racei�t � incomei�t �wealthi�t = $100,000) and financial moving costs for
that household would be $10,000, then Z̄i�t = (racei�t � incomei�t �wealthi�t = $90,000).

34We model the psychological costs as varying with the post-move type, Z̄i�t . An alternative
would be to allow them to vary with the pre-move type, Zi�t . In our empirical application, psycho-
logical costs only vary by fixed characteristics, in which case this distinction is irrelevant.

35In Section 4, we will outline in detail our assumptions about the transitions of the observable
states.



DYNAMIC DEMAND FOR HOUSES AND NEIGHBORHOODS 907

components are the focus of the first stage of our estimation approach, de-
scribed in the next section.

We define s̄it analogously to Z̄it , that is, s̄it is equal to sit with the exception
that Zit is replaced with Z̄it . Thus, we have

vMC
j (si�t)= vj(si�t)� if j = J + 1�(6)

vMC
j (si�t)= vj(s̄i�t)− PMC(Z̄i�t)� if j �= J + 1�

where

vj(si�t) = u(Xj�t� ξj�t�Zi�t� gi)(7)

+βE

[
log

(
J+1∑
k=0

exp
(
vMC
k (si�t+1)

))∣∣∣si�t� di�t = j

]
�

and analogously,

vj(s̄i�t) = u(Xj�t� ξj�t� Z̄i�t� gi)(8)

+βE

[
log

(
J+1∑
k=0

exp
(
vMC
k (si�t+1)

))∣∣∣s̄i�t � di�t = j

]
�

Equations (7) and (8) imply that value of living in a neighborhood going for-
ward is a function of the actual wealth available to the household after making
its location decision, which is Zi�t if the household does not move in period t
and Z̄i�t if it does move in period t. As discussed below, this aids in the iden-
tification and estimation of the model by making it possible to learn about
the relative value of living in each neighborhood j in each period t using the
location decisions of only those households who moved in that period. In par-
ticular, the values for households of a given wealth level are determined by the
location decisions of the households with that level of wealth after paying the
financial cost to move.

4. ESTIMATION

The estimation of the model primitives proceeds in two main stages. In the
first stage, we use the household location and mobility decisions to estimate
the value of lifetime expected utility for each neighborhood, time period, and
household type, where household type is characterized by race, income, and
wealth, as well as an unobservable characteristic that captures a household’s
preference for sub-regions within the Bay Area. In the second stage, we re-
cover fully flexible estimates of per-period utility and regress them on a set of
observable attributes. We use a novel approach, mentioned above, to control
for the endogeneity of price in this second stage, utilizing outside information
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relating to the financial cost of moving to pin down the coefficient on house
prices. As will become clear, an important feature of our estimation strategy is
its low computational burden.

For simplicity of exposition, we first present the estimation routine without
controlling for unobserved heterogeneity; this corresponds to not including gi

in the model above. We then outline how controlling for unobserved hetero-
geneity affects the estimation in Section 4.3.

4.1. Estimation Stage One—Household Location and Mobility Decisions

Stage one of our estimation approach focuses on household location and
mobility decisions. To provide context, we describe the nature of the data we
observe relating to household choices—the decisions we wish to capture when
forming a likelihood. A household appears in our data set for the first time
when we observe the household buying a house. This decision is only observed
conditional on that household choosing to move to a neighborhood in the Bay
Area in that period. We then observe whether or not that household chooses to
move in each subsequent period. We observe Ti of these decisions, where Ti is
the number of periods up to and including the period household i moves or is
censored because the household has not moved before the end of our sample.
If the household does move, we observe whether or not it subsequently chose
the outside option, which is defined as not buying in the Bay Area (and thus
includes renting). We first outline the location problem faced by a household
that has chosen to move, and then the problem of moving or staying in any
given period.

4.1.1. Household Location Decisions and Lifetime Expected Utility

A household who has decided to move will choose a neighborhood offer-
ing the highest lifetime utility by maximizing over the set of choice-specific
value functions vMC. Conditional on moving, the psychological moving cost
term, PMC(Z̄i�t), is assumed to be identical for any choice of neighborhood.
As an additive constant, it simply drops out and each household who moves
chooses neighborhood j to maximize vj(s̄i�t) + εi�j�t , where vj(s̄i�t) is given in
(8).

Based on household characteristics—income, wealth, and race in our actual
implementation—we divide households into distinct types indexed by τ. As
the financial moving costs reduce wealth, choosing to move changes a house-
hold’s type. In practice, we treat financial moving costs as observable and set
them equal to six percent of the value of housing in the neighborhood that a
household is leaving (i.e., FMC(Xhi�t )= 0�06 ·pricehi�t ). Analogously to the def-
initions of Z̄ and s̄, if a household of type τ moves, we denote its new type as
τ̄, reflecting the reduction in household wealth by FMC.

Let vτj�t = vj(si�t) when the characteristics (Zi�t) of household i imply that
the household is of type τ and let vτ̄j�t = vj(s̄i�t) when the characteristics (Z̄i�t)
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of household i imply that the household is of type τ̄. vτ̄j�t is then the choice-
specific value that a household of type τ̄ receives from choosing neighborhood
j, ignoring any potential psychological moving costs. Let uτ

j�t and uτ̄
j�t denote

the deterministic component of flow utility for households of type τ and τ̄,
respectively. We can then rewrite (7) and (8) using lifetime utilities, vτj�t and
vτ̄j�t :

vτj�t = uτ
j�t +βE

[
log

(
exp

(
v
τt+1
J+1�t+1

)
(9)

+
J∑

k=0

exp
(
v
τ̄t+1
k�t+1 − PMCτ̄t+1

))∣∣∣si�t� di�t = j

]

and

vτ̄j�t = uτ̄
j�t +βE

[
log

(
exp

(
v
τt+1
J+1�t+1

)
(10)

+
J∑

k=0

exp
(
v
τ̄t+1
k�t+1 − PMCτ̄t+1

))∣∣∣s̄i�t � di�t = j

]
�

Similarly to the above, τ = τ̄ �⇒ vτj�t = vτ̄�j�t
We assume that agents use the state variables in s and the decision di�t to

directly predict future lifetime utilities, vj�t+1 and future types, τt+1. We discuss
exactly how they forecast in Section 4.2.

For any given time period, the vector of mean lifetime utilities, vτ̄t , is unique
up to an additive constant, thus requiring some normalization for each τ̄.
Therefore, instead of estimating vτ̄j�t for every neighborhood and type, we esti-
mate ṽτ̄j�t , where ṽτ̄j�t = vτ̄j�t −mτ̄

t and mτ̄
t is a normalizing constant, which we can

estimate as it is identified by the mobility decisions discussed below. In prac-
tice, we set mτ̄

t such that the normalized lifetime expected utilities have a zero
mean for each type-year combination.

Household i of type τ̄ chooses option j if ṽτ̄j�t + εi�j�t > ṽτ̄k�t + εi�k�t�∀k �= j.
Conditional upon moving to an inside option (i.e., for di�t �= {0� J + 1}), the
probability of any household of type τ̄ choosing neighborhood j in period t
when εi�j�t is distributed i.i.d., Type I Extreme Value can therefore be expressed
as

Pτ̄
j�t =

eṽ
τ̄
j�t

J∑
k=1

eṽ
τ̄
k�t

�(11)
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Let t1�i denote the time period in which household i decides where to move
(conditional on moving to an inside option). A household’s likelihood contri-
bution for this decision is denoted by L

neigh
i (ṽ), where ṽ is the vector of all

values of ṽτj�t and is given by36

L
neigh
i (ṽ) =

J∏
j=1

(
Pτ̄
j�t1�i

)1[di�t1�i=j]
�(12)

We also want to estimate a lifetime utility term for the outside option. The
probability that a household chooses the outside option in time period t, con-
ditional on moving, is given by

Pτ̄
0�t =

eṽ
τ̄
0�t

J∑
k=0

eṽ
τ̄
k�t

�(13)

Given data that allow us (at least partially) to follow individuals through
time, we can form the likelihood that a household chooses the outside option
conditional on moving. Let t2�i denote the time period in which household i is
considering the outside option (conditional on moving). The likelihood, which
is denoted by Lout

i (ṽ), is given by

Lout
i (ṽ) = (

Pτ̄
0�t2�i

)1[di�t2�i=0](1 − Pτ̄
0�t2�i

)1[di�t2�i∈{1�����J}]
�(14)

For the many households who never make a subsequent move during our sam-
ple, we define Lout

i as equal to 1.

4.1.2. Household Mobility Decisions, Moving Costs, and the Marginal Utility of
Wealth

In a housing market context, households behave dynamically by taking into
account the effect that their current decision has on future utility flows. In our
model, the current decision affects future flows through the two channels men-
tioned previously: households are aware that they will incur a transaction cost
by re-optimizing in the future, and in addition, the decision concerning where
to live today affects wealth in the future. Equations (9) and (10) show how
the current decision affects both today’s flow utility and future utility; it also
makes clear that vτj�t and vτ̄j�t (or ṽτj�t and ṽτ̄j�t) as well as moving costs determine
households’ decisions to move or stay in a particular period.

36For these observations, we only observe the household’s post-move type, τ̄, and not the pre-
move type, τ. However, this is not a problem as the information is sufficient to construct Lneigh.
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From the model outlined above, we know that in any given period, a house-
hold will move if the lifetime expected utility of staying in its current neigh-
borhood is less than the lifetime expected utility of the best alternative when
moving costs are factored in.

Recalling that if a household of type τ moves, we denote their new type as τ̄,
a household will choose to stay if

vτJ+1�t + εi�J+1�t > max
k

[
vτ̄k�t + εi�k�t

] − PMCτ̄ �(15)

For example, if moving costs are $10,000, then a given household with $100,000
in wealth chooses where to live based on the utility of staying in its current
neighborhood with wealth of $100,000 and the highest alternative utility with a
wealth of $90,000.

Employing the definition of the normalized choice-specific value functions,
ṽτj , where ṽτj = vτj −mτ , we can then rewrite (15) as

ṽτJ+1�t + εi�J+1�t > max
k

[
ṽτ̄k�t + εi�k�t

] − (
mτ

t −mτ̄
t

) − PMCτ̄ �(16)

The term (mτ
t − mτ̄

t ) is unobserved but can be estimated as the difference be-
tween the value associated with being type τ and the value associated with the
reduced wealth after paying financial moving costs. In principle, we could es-
timate a separate term for each combination of τ and FMC; in practice, we
choose to parameterize it as a function of Z̄i�t and FMCi�t , so

mτ
t −mτ̄

t = FMCi�t γ
τ̄
fmc�

where FMCi�t = 0�06 · pricehi�t and γτ̄
fmc = Z̄′

i�tγfmc. We parameterize the psycho-
logical costs as

PMCi�t = Z̄′
i�tγpmc�

Note that the stochastic terms are maxk �=j[ṽτ̄k�t +εi�k�t], and εi�J+1�t .37 The prob-
ability that a household (whose stay-type is τ and whose move-type is τ̄) stays
in its current house in a given period t is

Pτ�τ̄
stay�i�t =

eṽ
τ
J+1�t

eṽ
τ
J+1�t +

J∑
k=0

eṽ
τ̄
k�t

−FMCi�t γ
τ̄
fmc−Z̄′

i�tγpmc

�(17)

37It would be straightforward to allow for a shock to moving costs also, which would effectively
allow all the idiosyncratic errors except εJ+1 to be correlated.
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The likelihood contribution of each household’s sequence of move/stay de-
cisions is denoted by L

stay
i (ṽ� γfmc�γpmc) and is given by

L
stay
i (ṽ� γfmc�γpmc)=

t1�i+Ti∏
t=t1�i+1

(
Pτ�τ̄

stay�i�t

)1[di�t=J+1](1 − Pτ�τ̄
stay�i�t

)1[di�t �=J+1] �(18)

4.1.3. Combined Likelihood

Combining the contributions from the location choice and move/stay deci-
sion, the full log-likelihood can then be expressed as

L(ṽ� γfmc�γpmc)(19)

=
N∑
i=1

(
log

(
L

neigh
i (ṽ)

) + log
(
Lout

i (ṽ)
) + log

(
L

stay
i (ṽ� γfmc�γpmc)

))
�

One estimation option would be choose (ṽ� γfmc�γpmc) to maximize L. This
would be computationally prohibitive. A simple and commonly used ap-
proach to circumvent this difficulty is to take advantage of the separability
of the log-likelihood function. In that vein, one could choose ṽ to maximize∑N

i=1(log(Lneigh
i (ṽ)) + log(Lout

i (ṽ))) and then choose (γfmc�γpmc) to maximize∑N

i=1(log(Lstay
i (̂ṽ� γfmc�γpmc))).38 The second step would have a low computa-

tional burden because the dimensionality of (γfmc�γpmc) is low and the gradient
and Hessian have closed-form solutions.39 The first step would also have a low
computational burden, because the first-order condition associated with maxi-
mizing

∑N

i=1(log(Lneigh
i (ṽ))+ log(Lout

i (ṽ))) yields a closed-form solution for ṽ.
This closed-form solution for ṽτj�t is given by

̂̃vτ̄j�t = log
(
P̂ τ̄
j�t

) − 1
J + 1

J∑
k=0

log
(
P̂ τ̄
k�t

)
�(20)

where P̂ τ̄
j�t denotes the empirical probability that households of type τ̄ choose

neighborhood j in period t.
In our application, instead of simply calculating observed shares as the por-

tion of households of a given type who buy in an area, we use a weighted mea-
sure to avoid some small sample issues when the number of types, M , grows
large relative to the sample size. We do this to incorporate the information

38As τ = τ̄ �⇒ vτj�t = vτ̄j�t , having estimates of ṽτ̄ for all τ̄ implies that we have estimates of ṽτ

for all τ.
39The second step would effectively be a standard binary-choice logit model with one of the

parameters (̂ṽ) known.
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from similar types when calculating shares for any particular type.40 Naturally,
the weights will depend on how far away the other types are in type space. De-
noting the weights by W τ̄(Z̄i�t), the formula for calculating observed shares (of
inside choices) is given by41

̂̂Pτ̄

j�t =

N∑
i=1

1[di�t=j] ·W τ̄(Z̄i�t)

N∑
i=1

W τ̄(Z̄i�t)

�(21)

where the weights are constructed as the product of K kernel weights, where K
is the dimension of Z. Each individual kernel weight is formed using a standard
normal kernel, N , and bandwidth, bk(τ̄), determined by visual inspection:

W τ̄(Z̄i�t) =
K∏

k=1

1
bk(τ̄)

N

(
Z̄i�t − Z̄τ̄

bk(τ̄)

)
�(22)

The outside option shares are estimated using the share of households who
were owning in the Bay Area, sell, and then choose to not buy another house
in the Bay Area.42

Formally, our estimation approach is given by

(̂ṽ� γ̂fmc� γ̂pmc)= arg max
(ṽ�γfmc�γpmc)

L(ṽ� γfmc�γpmc)(23)

subject to the constraint

̂̂Pτ̄

j�t = Pτ̄
j�t(ṽ)� ∀j ∈ {0� � � � � J}�(24)

In practice, the constraint (24) determines ̂̃v, which can be found using a first-
order condition analogous to (20).43 Treating ̂̃v as known, (γfmc�γpmc) is then
chosen to maximize

∑N

i=1(log(Lstay
i (̂ṽ� γfmc�γpmc))), which is effectively a stan-

dard binary-choice logit model.

40For example, if we want to calculate the share of households with an income of $50,000
choosing neighborhood j in period t, we would use some information about the residential deci-
sions of those earning $ 45,000 or $55,000 in that period.

41If W τ̄(Z̄i)= 1[Z̄i=Zτ̄ ],
̂̂P = P̂ .

42As there are fewer observations for households that we can follow over time, we do not

estimate ̂̂Pτ̄

0t separately for each year and type. Instead, for each type, we estimate a separate
logit model including a linear time trend.

43The closed form is given by ̂̃vτ̄j�t = log(̂̂Pτ̄

j�t )− 1
J+1

∑J
k=0 log(̂̂Pτ̄

k�t).
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Showing consistency is straightforward: as long as the weights in (22) are de-
fined such that ̂̂P → P̂ as the sample size increases, the constraint converges to
the first-order condition (20) and the estimation approach becomes standard
Maximum Likelihood.

Finally, the likelihood for the neighborhood choice decision, Lneigh
i , is condi-

tional on the unobserved, preliminary move decision which requires that the
ratio of choice probabilities, Pτ̄

j�t , for j ∈ {1� � � � � J} are invariant to whether one
conditions on di�t1�i ∈ {1� � � � � J} or not. Also, the factorization of the overall log-
likelihood into three additively separable marginal log-likelihoods in equation
(19) requires that the unobservables, εi�t , are uncorrelated across the three de-
cisions. Both these conditions are met by the earlier assumptions about the
error, namely, that it is distributed i.i.d., Type 1 Extreme Value and satisfies
Conditional Independence.44

4.2. Estimation Stage Two—Per-Period Utility

The second stage of the estimation procedure involves estimating per-period
utility in several sub-steps, then decomposing it.

From the first stage, we know the distribution of moving costs for each type,
the marginal value of changing type, and the mean utility terms, ṽ. The first
stage of our estimation approach involved making a normalization for each
household type, where ‘type’ could be defined by personal characteristics (race,
income, and wealth in our application). Once we set the mean choice-specific
utility from having no wealth to zero, we only need to know these baseline dif-
ferences, mτ

t −mτ̄
t , in order to recover the unnormalized choice-specific value

functions.45 As we can estimate the baseline differences, we simply recover the
true choice-specific value functions as vτj�t = ṽτj�t + mτ

t . It is important to re-
cover these baseline differences because they represent the additional utility
a household would receive from extra wealth, the marginal utility of wealth
being a key output of the estimation. Given that the choice of neighborhood
affects future household type, the baseline differences in utility across types
represent potential future utility gains from wealth accumulation. In addition,
we will also use the estimate of the marginal value of wealth as a novel way to
deal with the endogeneity of house prices in the final sub-step.

44When the only unobservable is ε, the I.I.A. properties of the error and the assumption of
independence over time guarantee that we satisfy these conditions. In Section 4.3, when we add
another unobservable (which captures unobserved geographic preferences), we make an addi-
tional assumption about the distribution of that unobserved heterogeneity. See Aguirregabiria
and Nevo (2013) for a useful discussion of the role of unobserved heterogeneity in dynamic mod-
els.

45We set the mean choice-specific utility from no wealth to zero for each year/income/race
combination. We are not imposing that these values are identically zero, however, and effectively
undo this temporary normalization through the use of year and type dummies in the last sub-step.
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4.2.1. Recovering Per-Period Utility

Given (v�γfmc�γpmc) from the first stage, the next step is to specify and es-
timate the relevant transition probabilities. We assume that households use
today’s states to directly predict future values of the lifetime utilities, v, rather
than predicting the values of the variables upon which v depends. As potential
future moving costs are a function of the price of housing in the neighborhood
chosen in this period, households also need to predict how the price of the
house they currently occupy will ‘transition.’ Further, as both moving costs and
lifetime utilities are determined by household type, households also need to
predict how their types will change. The only determinant of type that changes
endogenously is wealth, so we assume that knowing how house prices change
is sufficient for knowing how wealth (and thus type) will change also.46 We
therefore only need to model transition probabilities for v and price.

In theory, we could estimate the transition probabilities for lifetime utility
separately by type-neighborhood combination, as we have a time series for
each type and neighborhood. To increase the efficiency of our estimates, we
impose several restrictions.

Within each type, we could assume that the neighborhood mean utilities, vτj�t ,
evolve according to an autoregressive process, where some of the coefficients
are common across neighborhoods. In practice, we estimate transition prob-
abilities separately for each type but pool information over neighborhoods.
To account for different means and trends, we include a separate constant
and time trend for each neighborhood’s choice-specific value function for each
type. We model the transition of the choice-specific value functions, vτj�t , as

vτj�t = ρτ
0�j +

L∑
l=1

ρτ
1�lv

τ
j�t−l +

L∑
l=1

X ′
j�t−lρ

τ
2�l + ρτ

3�jt +ωτ
j�t�(25)

where the time-varying neighborhood attributes included in Xj�t are price,
racial composition (percent white), pollution (the number of days that the
ozone concentration exceeds the California state maximum threshold), and
the violent crime rate.47 Lagged value functions are also included as explana-
tory variables, implicitly allowing the transition probabilities to be a function
of the unobserved neighborhood attributes.

We also need to know how housing wealth changes in order to specify transi-
tion probabilities for types. We use sales data to construct price indices for each
type-tract-year combination. Recalling that price is one of the variables in the

46With access to richer data including other forms of household wealth, the definition of wealth
that we use to define type could be expanded.

47For the outside option, we do not observe any attributes and estimate only including lags of
the choice-specific value function. That is, we estimate vτ0t = ρτ

0�0 + ∑L
l=1 ρ

τ
1�lv

τ
0t−l + ρτ

3�0t + vτ0t .
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set of neighborhood characteristics, X , we estimate transition probabilities for
price levels according to

pricej�t = �0�j +
L∑
l=1

X ′
j�t−l�2�l +�3�jt +�τ

j�t �(26)

Given these transition probabilities, it is straightforward to estimate transition
probabilities for wealth and thus type, τ. In both cases, we use two lags of the
dependent variable (vτj�t or priceτj�t) as well as two lags of the other exogenous
variables in X .

Knowing v, PMC, and the transition probabilities allows us to calculate mean
flow utilities for each type and neighborhood, uτ

j�t , according to

uτ
j�t = vτj�t −βE

[
log

(
exp

(
v
τt+1
J+1�t+1

)
(27)

+
J∑

k=0

exp
(
v
τ̄t+1
k�t+1 − PMCτ̄t+1

))∣∣∣si�t� di�t = j

]
�

where, in practice, s includes all the variables on the right-hand side of equa-
tions (25) and (26), and β is set equal to 0.95.

For each type, τ, neighborhood, j, and time, t, we now have the necessary
information to simulate the expectation on the right-hand side of (27). To do
this, we draw a large number of vj�t+1’s and pricej�t+1’s according to their esti-
mated distributions. Specifically, using r to index random draws, each vj�t+1(r)
and pricej�t+1(r) are generated by drawing from the empirical distribution of er-
rors obtained when estimating (25) and (26) and using the observed values of
the current states. The draws on pricej�t+1 are used to form τt+1 and MCτt+1

j�t+1.48

For each draw, r, we can then calculate a per-period flow utility uτ
j�t(r) using

(27). The simulated uτ
j�t is then calculated as 1

R

∑R

r=1 u
τ
j�t(r).

49

4.2.2. Decomposing Per-Period Utility

Once we recover the mean per-period flow utilities, we can decompose them
into functions of the observable neighborhood characteristics, Xj�t . We treat
ξτ
j�t as an error term in the following regression:

uτ
j�t = ατ

0 + ατ
c + ατ

t +X ′
j�tα

τ
x + ξτ

j�t �(28)

48Once we draw a value for pricej�t+1, we can calculate wealtht+1 for someone living in neigh-
borhood j as wealtht + (pricej�t+1 − pricej�t ) and MCτt+1

j�t+1 as 6 percent of pricej�t+1.
49The total number of draws, R, is chosen to be large enough such that the simulated uτ

j�t does
not change as R increases. In practice, setting R equal to 10,000 is sufficient.



DYNAMIC DEMAND FOR HOUSES AND NEIGHBORHOODS 917

This decomposition of the mean flow utilities is similar to Berry, Levinsohn,
and Pakes (1995) or Bayer, Ferreira, and McMillan (2007), though in these
models, the choice-specific unobservable, ξj�t , was treated as a vertical charac-
teristic that affected all households’ utilities in the same way. In our applica-
tion, we allow households who are different (based on observable demographic
characteristics) to view the unobservable component differently, as in Timmins
(2007)—hence the ‘τ’ superscript in ξτ

j�t . In addition to the neighborhood char-
acteristics already referred to, we include controls for type (τ), county (c), and
year (t).

The user cost of owning a house is typically calculated as a percentage of
house value. Here, we calculate the user cost for a given neighborhood as 5 per-
cent of mean prices in the neighborhood. User costs are clearly endogenous,
however. The traditional approach to this problem makes use of instrumen-
tal variables. Our approach is different: we use the marginal value of wealth
estimated in Section 4.1.2 to recover the marginal disutility of user costs. We
assume that the effect of a marginal change in wealth on lifetime utility is the
same as the effect of a marginal change in income on one period’s utility. In
particular, the marginal utility of income (the negative of which can be inter-
preted as the coefficient on user cost) is given by γτ

fmc. To decompose mean flow
utilities, we therefore estimate the following regression, where γ̂τ

fmc is known
from Stage 1 and X̃ denotes the non-user cost components of X:

uτ
j�t + γ̂τ

fmcusercostj�t = ατ
0 + ατ

c + ατ
t + X̃ ′

j�tα
τ
x + ξτ

j�t �(29)

In principle, we could decompose the flow utilities separately for each type,
τ, as written above. In practice, we estimate two versions of the model. In the
first, we constrain ατ

c�α
τ
t �α

τ
x to be the same for all τ. In the second, we allow

ατ
c�α

τ
t �α

τ
x to vary with income, but not with wealth. In both cases, no restric-

tions are placed on ατ
0 and ξτ

j�t .

4.3. Estimation—Unobserved Geographical Preferences

We model a form of individual unobserved heterogeneity that describes ge-
ographic preferences. These capture persistent sub-regional attachments asso-
ciated with place of work or extended family ties, neither of which are observed
in our data set;50 information about place of work is one respect in which con-
fidential Census data are unambiguously better.

Specifically, based on a household’s unobservable type, we allow households
to have preferences for sub-regions within the Bay Area. A household’s un-
observable type is denoted by gi ∈ {1�2�3}, where gi = 1 denotes a house-
hold with a preference for San Francisco and Marin (specifically San Francisco

50Other avenues through which unobserved attributes might affect the lifetime utility house-
holds received from different neighborhoods come to mind, though persistent unobserved geo-
graphic preferences are particularly natural.
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County, Marin County, and San Mateo County), gi = 2 denotes a household
with a preference for the South Bay (Santa Clara County), and gi = 3 denotes
a household with a preference for the East Bay (Alameda County and Contra
Costa County). The corresponding ex ante probabilities that households are of
a particular type are given by {π1�π2�π3}; analogously, the sub-region in which
neighborhood j is located is denoted by Gj ∈ {1�2�3}, where Gj = 1 if neigh-
borhood j is in {San Francisco County, Marin County, San Mateo County},
Gj = 2 if neighborhood j is in {Santa Clara County}, and Gj = 3 if neighbor-
hood j is in {Alameda County, Contra Costa County}.

Our choice of sub-regions is motivated by the geographic structure of the
labor market in the Bay Area. The South Bay, for example, corresponds to
the traditional region of Silicon Valley stretching from just north of Palo Alto
(Stanford) to San Jose. An advantage of adding unobserved geographic hetero-
geneity to the model is that it helps to more appropriately define the primary
choice set that households consider when deciding whether to move—that is,
that neighborhoods on the far side of the metropolitan area are not as likely to
be attractive alternatives, even if they would otherwise appear to be so based
on amenities and prices.51

This richer preference specification leads to a change in the first stage of
the estimation approach described above. We parameterize the value func-
tions such that v

τ�g
j�t = vτj�t + φ1[Gj=g] (and v

τ̄�g
j�t = vτ̄j�t + φ1[Gj=g]). That is, the

lifetime expected utility that a household of type (τ�g) receives from living in
a given neighborhood is composed of two terms: vτj�t , the common component
that anyone of type τ would receive from living in that neighborhood, plus
an additional term, φ, which they only receive if the neighborhood is located
in their preferred sub-region. This specification captures sub-regional attach-
ments, perhaps related to place of work (the concentration of the semiconduc-
tor industry in sub-region 2, for example).

Using this specification for v
τ�g
j�t , we can define unobserved type-specific

choice probabilities (Pτ̄�g
j�t � P

τ̄�g
0�t � P

τ�τ̄�g
stay�i�t) and unobserved-type-specific likelihood

contributions (Lneigh
i�g (ṽ�φ)�Lout

i�g (ṽ�φ)�L
stay
i�g (ṽ�φ�γfmc�γpmc)) that are analo-

gous to the no-unobserved-heterogeneity case. These equations can be found
in Appendix B.

As before, the likelihood for the neighborhood choice decision, Lneigh
i , is con-

ditional on the unobserved preliminary move decision. Now, with the addition
of unobserved geographical preferences, we make an assumption similar to
Aguirregabiria and Nevo (2013).

CONDITIONAL INDEPENDENCE OF HETEROGENEITY ASSUMPTION:

Prob
(
gi = g|di�t1�i ∈ {1� � � � � J}� si�−g

) = Prob(gi = g|si�−g)= πg�(30)

51Conditional on staying in the Bay Area, 79.8 percent of moves are within sub-region.
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That is, we assume that the probability of a household being of a given type,
given that they move and locate somewhere in the Bay Area, is the same as the
unconditional probability of being that type.52,53

The overall log-likelihood is then the sum of the log of each household’s
likelihood contribution, where a household’s likelihood contribution is the
weighted sum of the household’s unobserved-type-specific likelihood contri-
bution over all observed decisions:

L(ṽ�φ�γfmc�γpmc�π)(31)

=
N∑
i=1

log

(
3∑

g=1

πgL
neigh
i�g (ṽ�φ)Lout

i�g (ṽ�φ)L
stay
i�g (ṽ�φ�γfmc�γpmc)

)
�

The unobserved heterogeneity estimator is given by

(̂ṽ� φ̂� γ̂fmc� γ̂pmc� π̂) = arg max
(ṽ�φ�γfmc�γpmc�π)

L(ṽ�φ�γfmc�γpmc�π)(32)

subject to the constraint

̂̂Pτ̄

j�t =
3∑

g=1

πgP
τ̄�g
j�t (ṽ�φ)� ∀j ∈ {0� � � � � J}�(33)

While estimation is less simple than in the ‘no unobserved heterogeneity’
case, it is still straightforward. With the addition of unobserved heterogene-
ity, observations are not independent over time, and the log-likelihood is no
longer additively separable in Lneigh, Lout, and Lstay. Thus estimation is not done
sequentially. The computational burden is still low, however. While searching
for the parameters that maximize L, for each guess of (φ�γfmc�γpmc�π), a con-
traction mapping finds the corresponding optimal vector of (ṽ). This Berry
(1994)-style contraction mapping is given by

ṽτ̄�r+1
t = ṽτ̄�rt + log

(̂̂Pτ̄

t

) − log

(
3∑

g=1

πgP
τ̄�g
t

(
ṽτ̄�rt �φ

))
�(34)

52Note that we are not assuming that the distribution is invariant to conditioning on where in
the Bay Area a household moves—that is, the probability of a household being a South-Bay type
conditional on choosing to live in a neighborhood in the South Bay will be different compared
with the unconditional probability. One way in which this assumption could be violated is as
follows: if at different times the relative attractiveness of sub-regions varies, households with
preferences for the sub-region becoming relatively more attractive may be more likely to have
moved. We are grateful to an anonymous referee for suggesting this example.

53si�−g is composed of all the states in s (except for gi) for all the years that we observe house-
hold i.
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Two key features of the data help identify φ and π. Taking these in turn, sup-
pose that a household would receive a low value from living in neighborhoods
in a particular sub-region, based on observable characteristics (and other pa-
rameters). If we observed this household choosing a neighborhood in the given
sub-region, we would infer that it had a high unobserved taste for that sub-
region. Furthermore, if this household never subsequently moved, we would
further infer a strong taste for that region. If many such households are ob-
served, this will identify a high value for φ. In terms of the identification of
π, given (φ�γfmc�γpmc� ṽ), if households are more likely to choose a given sub-
region initially or are less likely to leave a given sub-region, this will identify a
higher π for that sub-region.

4.4. Discussion: Measuring Wealth and Broader Life-Cycle Modeling Issues

Before turning to the results of our analysis, it is important to point out
the strengths and limitations of our measure of ‘wealth’ and, consequently, the
limits of our model compared to a life-cycle model of consumption and savings.

To date, the literature on residential sorting has been primarily static pre-
cisely because it has been so difficult to build a data set that follows a sizable
sample of individuals over time as they move within a metropolitan area. By
linking housing transactions data with information from loan applications, our
analysis is the first to be able to track such movements for a large sample of
households. Our resulting data set includes information about race, income,
and the down-payments made by households at the time of purchase. While
this represents a significant innovation relative to data sets used in prior work,
several limitations remain: (i) we do not observe other household attributes
such as family size or age, and (ii) we do not observe annual measures of in-
come, wealth, consumption, etc. The latter would be necessary for the devel-
opment of a richer life-cycle model of behavior.

In light of this limitation, the evolution of wealth plays a more limited role
in our model of household decisions than it would in a fully specified life-cycle
model. The main dynamic captured in our model is that a household’s wealth
increases as its home appreciates and decreases in the event of a move, given
that moving costs are substantial. In this way, our model captures the natural
trade-off arising when it comes to the decision of whether to move: relocating
allows households to re-optimize their location given accumulated changes in
their wealth and the set of available neighborhoods, but comes at the expense
of a sizable moving cost (usually 6% of house value), which effectively lowers
household wealth.

Given our lack of information about savings and consumption, we formu-
late the decision problem in terms of an indirect utility framework, that is, we
allow per-period utility to vary completely flexibly by household type, which
depends on race, income, and wealth. This formulation allows us to use the
dynamic trade-off embedded in the decision of whether to move (re-optimize
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across locations) to recover the marginal utility of wealth, along with marginal
willingness-to-pay measures for neighborhood amenities. The latter measures
are important for a range of research questions associated with hedonic valua-
tion or cost-benefit analysis linked to policies that affect neighborhood ameni-
ties. That said, our current modeling approach might not be appropriate for
answering certain kinds of questions related to important life-cycle issues, for
example, how changes in interest rates or other aspects of saving/borrowing
technology would affect the housing market equilibrium.

5. RESULTS

5.1. Preliminary Evidence on Dynamic Considerations

Before presenting estimates for various specifications of our dynamic model
of neighborhood choice, we begin this section by motivating the inclusion of
dynamic considerations in a model of location choice in the first place.

One form of evidence in favor of forward-looking behavior in the hous-
ing market comes from outside the model. For example, Case, Shiller, and
Thompson (2012) used survey evidence collected over decades to characterize
household expectations for future house price changes. They concluded that
households systematically expect house prices to continue to move in the same
direction in the near term, which is consistent with the positive momentum in
house price changes routinely observed in the data for metropolitan housing
markets.54

Evidence of forward-looking behavior in our model essentially amounts to
asking whether there is any information in the data that distinguishes a positive
discount rate β from zero. As discussed in Rust (1994), without restrictions on
primitives, β is not nonparametrically identified; intuitively, if state variables
affect both current utility and expectations about future utility, then nonpara-
metrically separating these two roles is impossible without imposing further
structure. Magnac and Thesmar (2002) added to this discussion and showed
that dynamic models are identified with an appropriate exclusion restriction—
in particular, a variable that shifts expectations but not current utility. In the
context of our framework, lagged amenities provide exactly this sort of ex-
clusion restriction: while current utility depends on the current level of the
amenities provided in a neighborhood, lagged amenity levels help predict how
amenities will evolve going forward and thus contribute to expectations about
the future utility associated with that choice of neighborhood.

54We also note that the trade-offs that households face when choosing among the menu
of available mortgage contracts often explicitly depend on dynamic considerations. American
households, for example, routinely have the option to pay more upfront (so-called “paying
points”) to reduce the fixed interest rate over the course of the loan. This trade-off depends
on the household’s expectations about how long they are likely to stay in the home as well as their
likelihood of refinancing over the next decade, which is a function of future expectations about
the movement of interest rates and local housing prices.
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TABLE II

EVIDENCE OF DYNAMIC BEHAVIORa

Share Share

Percent white 0.02479 0.02709
(0.00028) (0.00367)

Violent crime −0.00092 −0.00047
(0.00002) (0.00003)

Ozone 0.07284 0.04831
(0.00178) (0.00184)

Price −0.01331 −0.00734
(0.00018) (0.00072)

Lagged percent white −0.00316
(0.00363)

Lagged violent crime −0.00034
(0.00003)

Lagged ozone 0.07092
(0.00179)

Lagged price −0.00577
(0.00073)

aThe dependent variable is measured as ̂̂Pτ
j�t · 1000. ̂̂Pτ

j�t is de-
fined in (21).

To highlight the potential role of dynamic considerations in household loca-
tion decisions, we present the results of a simple exercise where we look for
preliminary, reduced-form evidence of forward-looking behavior. We use the
estimated probability of a given type of household choosing a neighborhood,̂̂Pτ

j�t , as a measure of household behavior and examine how these type-specific
neighborhood choice probabilities (or type-specific neighborhood shares) vary
with both contemporaneous and lagged measures of amenities in that neigh-
borhood in Table II.

As these neighborhood choice probabilities are measured separately for
each household type, they vary significantly across neighborhoods; for exam-
ple, low-income households have small market shares for very expensive neigh-
borhoods. Because our main estimation sample (which we also use here) con-
sists only of white households, these type-specific neighborhood shares used
here are also greater for the types of neighborhoods chosen more frequently
by white households.55

The results are consistent with forward-looking behavior and reveal that
lagged measures are statistically and economically significant, implying that

55We use choice probabilities for 75 types: 25 wealth types measured in $10,000 increments—
$0 to $240,000—interacted with three income types—$40,000, $120,000, and $200,000—and for
white households only. This corresponds to the data used in the second stage of estimation as
discussed below.
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agents consider both the current state of the neighborhood and how that state
has been changing recently when making location decisions.

These results also foreshadow our subsequent comparisons of MWTP es-
timates from the dynamic and static models. For crime and air quality mea-
sures, the results show that households put comparable weight on current and
lagged measures, implying that their decisions are based more on a longer-run
average than the observed measures for a given year. In contrast, the results
for neighborhood race imply that households value both the current neigh-
borhood composition and recent changes in composition (which predict future
neighborhood composition) in a similar manner; that is, the coefficient for the
lagged value has the opposite sign of the coefficient on the current value.

5.2. Baseline Results

We now present our baseline estimates of the model with unobserved het-
erogeneity. The model can be estimated separately for any given time-invariant
observable household characteristic. The results we report here are based on
estimating the second stage of the model (in which we regress per-period utility
on a set of observable attributes) for three income types—$40,000, $120,000,
and $200,000—and for white households only.56 The estimation requires that
we include many categories of wealth as a household’s wealth transitions en-
dogenously. In total, we have 225 types in the second stage: 25 wealth types
measured in $10,000 increments—$0 to $240,000—interacted with the three
income types and the three unobserved types.57 When, for comparison, we es-
timate a version of the model without the three unobserved types, this reduces
the total number of types to 75.

While there are several steps in the estimation, the primary results of inter-
est are the marginal willingness-to-pay estimates recovered in the final stage.58

Given that our approach to controlling for the endogeneity of user cost makes
use of estimates of the marginal utility of wealth, we also include a brief dis-
cussion of the moving cost results, as follows.

56As we mentioned above, the estimation could easily be replicated for other racial and ethnic
groups, although additional smoothing may be necessary to deal with sparse parts of the type
space in the first stage.

57In the first stage, we want to use as much data as possible. As this requires assigning house-
holds to the nearest type, we include a much larger number of types. In that case, we use 25
income types and 25 wealth types (both measured in $10,000 increments from $0 to $ 240,000) as
well as the three unobserved types, when applicable.

58Transition probability estimates of (25) and (26) are provided in Tables A.III and A.IV in Ap-
pendix A. As (25) is estimated separately for every type and includes both neighborhood dummies
and neighborhood-specific time trends, there are too many parameters to report. Therefore, with
L = 2, we form

∑L
l=1 ρ

τ
l for each type and report the percentiles across types.
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TABLE III

MOVING COST ESTIMATESa

Psychological costs
Constant 9.50612

(0.04270)
Income −0.00209

(0.00035)
t −0.15111

(0.00427)

Financial costs
Constant · 6% House value 0.03515

(0.00148)
Income · 6% House value −0.00008

(0.00001)

aIncome and House value are measured in $1000’s.

5.3. Moving Costs and the Marginal Utility of Wealth

We use the binary move/stay decision faced by each household in every pe-
riod to identify and estimate the psychological and financial components of
moving costs; exploiting the fact that financial moving costs are 6 percent of
the selling price allows us to recover the marginal value of wealth as well. The
results of this estimation are given in Table III. From the table, it is clear that
the psychological costs of moving are large, they decrease slightly in household
income, and are falling over (calendar) time.59

The financial cost estimates are of particular interest, given that they re-
late to the marginal value of wealth. The estimates suggest that the marginal
value of wealth is positive but considerably lower for high-income types. The
marginal per-period utility of income coefficient that we take to the estimation
of the final stage is given by 0�03515 − 0�00008 · income. Our estimate of the
marginal per-period utility of income is decreasing in income, as expected, and
is roughly half as small for households with an income of $200,000 compared
to those with an income of $40,000.

5.4. Marginal Willingness to Pay for Neighborhood Attributes

In the process of decomposing the estimates of flow utilities in the second
stage, we control for the endogeneity of user cost by estimating equation (29).

59The mean psychological costs are high as they represent the amount a household would pay
to avoid moving to a randomly chosen neighborhood in a randomly chosen time period. See
Kennan and Walker (2011) for an excellent discussion of the interpretation of moving costs in
this class of models.
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We decompose the flow utilities in two ways.60 First, we pool the mean utilities
for all types and restrict the preference parameters for percent white, violent
crime, and ozone (as well as the county and year effects) to be the same for all
households.61 Later, we relax these restrictions, estimating willingness to pay
separately by income.62

The raw coefficients resulting from this process are reported in Table A.V
in Appendix A, but are difficult to interpret by themselves. Therefore, to bet-
ter understand the magnitude of the coefficients, we calculate per-period will-
ingness to pay for changes in each neighborhood characteristic. Per-period
marginal willingness to pay (in $1000’s) is given by ατ

x/γ
τ
fmc, which measures

how much a household would be willing to pay annually to receive a given
change in each of the amenities, holding expectations about future amenities
constant.

Table IV reports willingness-to-pay (WTP) measures for a 10-percent change
in each amenity across four different specifications, the WTP figures being
given at the means of percent white (69.6), the violent crime rate (453.7 per
100,000 residents), and ozone (2.2 days exceeding the state pollution stan-
dard). As the marginal utility of income, γτ

fmc, varies by income, we report the
willingness-to-pay measures for a household with income of $120,000, which is
close to the mean.

Our preferred specification is reported in column I. In this specification,
we exclude the two highest and two lowest wealth categories (out of 25) and

TABLE IV

WILLINGNESS TO PAY FOR A 10-PERCENT INCREASE IN AMENITIES

I II III IV

Percent white 2256.08 2471.00 2188.18 2349.80
(95.65) (114.08) (92.10) (110.65)

Violent crime −760.31 −620.10 −725.18 −573.48
(40.24) (40.76) (38.45) (39.13)

Ozone −359.88 −315.50 −347.15 −299.36
(21.11) (24.12) (20.33) (24.09)

County dummies Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes
Type dummies Yes Yes Yes Yes
Estimator LAD OLS LAD OLS
Wealth outliers NO NO YES YES

60In both ways, we include a dummy variable, 1[Gj=g], to allow utility to be different for types
living in their preferred sub-region.

61This corresponds to u
τ�g
j�t + γ̂τ

fmcusercostj�t = ατ
0 + αc + αt + αg1[Gj=g] + X̃ ′

j�tαx + ξτ
j�t .

62This corresponds to u
τ�g
j�t + γ̂τ

fmcusercostj�t = ατ
0 + αinc

c + αinc
t + αinc

g 1[Gj=g] + X̃ ′
j�tα

inc
x + ξτ

j�t .
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use a Least Absolute Deviations (LAD) regression to limit the effect of out-
liers. The results show that households with income of $120,000 are willing to
spend $2,256.08 per year to increase percent white in the neighborhood by ten
percentage points at the mean. The estimates are very precise.63 Analogously,
households with $120,000 in income are willing to pay $760.31 for a ten-percent
reduction in violent crime.64 For ozone, households are willing to pay $359.88
for a ten-percent reduction in the number of days that ozone exceeds the one-
hour state standard of 90 parts per billion.65

To shed light on the robustness of these WTP estimates, we also estimate
the model using OLS instead of LAD in column II; the results there are quite
similar. In columns III and IV, we estimate the model without excluding the
two highest and two lowest wealth categories using LAD and OLS regressions,
respectively. As can be seen from the table, the results are reasonably similar
to those in column I.

As a supplement to the pooled estimates in Table III, we also estimate the
willingness-to-pay measures separately for each of the three income types:
$40,000, $120,000, and $200,000. The results are presented in Table V and
point to significant heterogeneity in willingness to pay for neighborhood
amenities by income. For ease of exposition, we only show results for our pre-
ferred specification—that is, using median regression and excluding the ex-
treme wealth types.

The implied income elasticities of demand (by white households) for neigh-
borhood race are substantial, with a five-fold increase in income raising WTP

TABLE V

WILLINGNESS TO PAY FOR A 10-PERCENT INCREASE IN AMENITIES BY INCOME

$40,000 $120,000 $200,000

Percent white 612.09 2428.93 4888.46
(87.09) (121.89) (275.08)

Violent crime −350.18 −962.20 −1298.81
(47.68) (67.29) (92.79)

Ozone −302.06 −380.03 −395.58
(24.82) (26.98) (37.12)

63All the standard errors reported here and elsewhere in the paper were obtained using a
bootstrap procedure with 240 draws.

64This willingness to pay implies a value of a statistical case of violent crime (similar in con-
struction to the familiar value of a statistical life) of $1.6 million. This amount is consistent with
other research on the costs of crime (Linden and Rockoff (2008)) and is reasonable in magnitude
(i.e., approximately one fifth the size of a typical VSL estimate).

65The corresponding willingness-to-pay figures for one-unit changes in the three amenities are:
$323.96 per year to increase percent white by one percentage point, −$16.76 for one additional
violent crime per 100,000 residents, and −$1657.65, for one extra day of ozone exceeding the
threshold.



DYNAMIC DEMAND FOR HOUSES AND NEIGHBORHOODS 927

for percent white almost eight times. Similarly for crime, a five-fold increase in
income is estimated to increase WTP slightly less than a factor of four. In con-
trast, the implied income elasticities of demand for ozone are much smaller,
with a five-fold increase in income only increasing WTP to avoid ozone by 31
percent.

Recalling that gi = 1�2�3 denotes households with preferences for sub-
region 1 (San Francisco and Marin), sub-region 2 (the South Bay), and sub-
region 3 (the East Bay), respectively, the estimated probabilities of a household
being of type g are π̂ = {0�3625�0�2286�0�4088}. The estimate of the own-sub-
region taste parameter is φ̂ = 1�8664. For a household with annual income of
$120,000, this means that if a given neighborhood is in one’s preferred sub-
region, it increases the lifetime utility from living in that neighborhood by an
amount equivalent to a one-time payment of $73,372.

5.5. Model Fit

In the context of the location choice literature, the estimated model with
unobserved individual heterogeneity does reasonably well at predicting neigh-
borhood choices for households of a given type. In particular, 31 percent of
households choose a neighborhood that would have been ranked in the top 5
percent of their choices and 47 percent choose one from the top 10 percent
of ranked choices when the idiosyncratic errors are excluded from the predic-
tion.66 Including unobserved individual heterogeneity improves the fit signifi-
cantly because it helps to account for factors such as employment location that
clearly affect individual location decisions. For the model without unobserved
heterogeneity, 23 and 37 percent of households choose a neighborhood in the
top 5 and top 10 percent of their ranked choices, respectively.

Given that household types are distinguished only by race, income, and
wealth in our empirical model, it would be surprising if the non-idiosyncratic
components of the model were able to explain location decisions much better,
given that many other factors (e.g., employment locations, education, family
structure, age, etc.) certainly play a large role in individual location decisions.
In this respect, our results are very close in spirit to those presented in Kennan
and Walker (2011) for their analysis of inter-state migration decisions. In par-
ticular, Kennan and Walker showed that idiosyncratic errors are also an im-
portant driver of individual location decisions in that context. In the location
choice literature more generally, idiosyncratic errors naturally play an impor-
tant role in any model with a large number of choices. While these models
cannot perfectly predict the location decision of any individual, they can gen-
erally predict quite well the types of locations that households with certain
characteristics tend to select, as our model does here.

66Seventy-five percent of households choose a neighborhood from the top quartile of their
ranked choices.
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6. INTERPRETING THE ESTIMATES

In this section, we contrast our preferred estimates from a dynamic model
including unobserved heterogeneity with estimates first from a static model,
and then with a dynamic model without unobserved heterogeneity.

6.1. Dynamic versus Static Approaches

In this subsection, we compare the MWTP estimates from a dynamic model
with those from a corresponding static model. The goal of this exercise is to
highlight the nature of the potential biases that might result from ignoring dy-
namic considerations by using models that are otherwise identical. It is im-
portant to note, however, that this does not imply that specific parameter es-
timates that we report in this paper are necessarily better than some of the
existing estimates in the literature based on static approaches. In particular,
the static estimates that we report in this nested comparison fall short of the
static ‘gold standard’ in at least two respects. First, several well-known static
choice models are estimated using confidential census data; and the rich cross-
sectional information there certainly affords a very detailed view of individual
attributes—race, education, family structure, even work location—not avail-
able in the dynamic panel we have assembled for this paper. The second re-
spect in which our comparable static estimates fall short is that the amenities
are treated as exogenous in our analysis; that is, no explicit research design is
utilized to exploit exogenous amenity variation.

Equation (9) illustrates the difficulty associated with estimating a static
model when the true model is dynamic: in essence, specifying a static model
creates an omitted variables problem. In a dynamic setting, current neighbor-
hood characteristics determine the choice-specific value functions in two ways:
(i) they affect flow utility directly, and (ii) they help predict future neighbor-
hood utility. Estimating a static model omits the latter effect.

We show how the static model can be conveniently nested within our dy-
namic framework. The former effectively assumes that the household will al-
ways stay in the same location and that attributes will never change; therefore,
the location-specific value function remains constant over time. As such, one
interpretation of the static model is that vτj�t = uτ

j�t/(1 − β). The omitted vari-
able can then be expressed as

βE

[
log

(
exp

(
v
τt+1
J+1�t+1

)
(35)

+
J∑

k=0

exp
(
v
τ̄t+1
k�t+1 − PMCτ̄t+1

))∣∣∣si�t� di�t = j

]
−βvτj�t �

The specific way a given current characteristic predicts future utility will
determine whether the static estimator over- or under-predicts the effect of
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that characteristic on per-period utility. If higher values of a given character-
istic predict improvements in a neighborhood from the perspective of a given
household type, then the marginal willingness to pay for that attribute will be
biased towards positive infinity, which is the case for all three amenities we
consider (public safety, air quality, and neighborhood percent white).67

To set out the relevant intuition, it is useful to think about the current value
of an attribute predicting future exposure to that attribute, rather than future
utilities. There are two primary components to this term: how the amenity will
change if the household does not move, and what the amenity exposure will
look like if the household does move. We first consider the non-move case.
Take a disamenity, such as violent crime, which is mean-reverting; as in our
data, a high level of crime today predicts falling crime in future. In this case,
we would expect the static model to understate the disutility of crime. The
argument is as follows: households may be willing to pay quite large amounts
to avoid high levels of crime. However, when they see a neighborhood with
a high value of this disamenity, they know that the value is likely to fall in
the future; and they are therefore willing to pay much more for a house in
that ‘bad’ neighborhood than they would be willing to pay if the high value of
the disamenity were permanent. The upshot is that the estimated willingness
to pay to avoid crime taken from a naive static model will tend to be biased
downward. The same type of argument applies to air pollution—in our data,
ozone levels are also mean-reverting.

There are other neighborhood attributes that are persistent over time, such
as racial composition. In contrast to ozone and crime, a high percentage of
white households in a neighborhood today signals that the neighborhood is
more likely to have an even higher percentage of white households in the fu-
ture (in our sample). If these are attributes that households value (and recall
that we are only modeling the decisions of white households), they will be will-
ing to pay more for a house in such a neighborhood than they would be if
the high value of the attribute were only temporary; in other words, persistent
amenities are likely to be worth more than fleeting ones. A naive static model
ignores this fact and attributes all of the value to current preferences, thereby
overstating the contribution to flow utility of predominantly white neighbor-
hoods for white households.

The second determinant of future exposure is expected exposure to the
amenity if one moves. The choice today can determine the probability of mov-
ing in future periods and can also influence the future neighborhood choice
through wealth effects. Having said that, given a choice between two neighbor-
hoods this period, positive predicted mobility will always push expected future

67Given that our actual measures are for crime and pollution—disamenities rather than
amenities—a positive bias in the relevant coefficient means that the absolute effect of crime and
pollution on utility will be biased downwards; that is, the static results will suggest households
have a weaker distaste for those disamenities.
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exposure to an amenity to be more similar across the neighborhoods in the dy-
namic model compared with the static model where future mobility is assumed
to be zero. The effect of this leads the static model to underestimate the taste
for the amenity.

To highlight the problems associated with ignoring forward-looking behav-
ior, we estimate a static version of our model for comparison purposes. Under
the assumption that agents are not forward-looking, a fraction of Stage 1 es-
timates (i.e., vτj�t(1 − β)) can be interpreted as flow utilities. We can then de-
compose those flow utilities by running the same Stage 2 procedure used to
decompose uτ

j�t above. In particular, we estimate equation (29), replacing uτ
j�t

with vτj�t(1 − β). The marginal utility of income is recovered in Stage 1 and is
still equal to γτ

fmc. By using the same marginal utility of income coefficient as in
our dynamic specification, we keep the models as comparable as possible and
limit any bias to the coefficients relating to the amenities. Here, even if the re-
searcher were to incorrectly assume the model to be static, she would control
for the correlation between price and unobserved neighborhood attributes us-
ing an Instrumental Variables approach. Yet if the true model is dynamic, the
chosen instrument will typically not be valid.68

Table VI reports the marginal willingness to pay for a 10-percent change in
each amenity derived from the static version of the model, where willingness to
pay varies with income. The earlier dynamic results from Table V are also in-
cluded for ease of reference. As before, the marginal willingness-to-pay figures
are reported at the means of the amenity levels.

TABLE VI

WILLINGNESS TO PAY FOR A 10-PERCENT INCREASE IN AMENITIES—STATIC VERSUS
DYNAMIC ESTIMATES BY INCOME

Static Dynamic

$40,000 $120,000 $200,000 $40,000 $120,000 $200,000

Percent white 1627.03 1901.43 2221.66 612.09 2428.93 4888.46
(12.92) (18.67) (48.56) (87.09) (121.89) (275.08)

Violent crime −291.14 −380.66 −448.88 −350.18 −962.20 −1298.81
(8.13) (10.98) (19.40) (47.68) (67.29) (92.79)

Ozone −66.24 −80.71 −97.04 −302.06 −380.03 −395.58
(2.00) (2.39) (3.25) (24.82) (26.98) (37.12)

68The problem with the IV strategy is that if the true model is actually dynamic, any static
instrument will be correlated with expected future utility, which is subsumed in the error term. In
particular, any potential instrument must satisfy the condition that it should be correlated with the
endogenous variable—in this case, price. Now, expected future utility is a function of all current
attributes. Therefore, unless current price has no predictive power with respect to future utility,
it will be impossible to find an instrument that is both correlated with price but also uncorrelated
with expected future utility.
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The comparison of static and dynamic results in the table suggests that esti-
mating a static model in a dynamic context can lead to very biased estimates.
The static model substantially overestimates willingness to pay for living in
close proximity to neighbors of the same race for low-income households:
the static estimate is $1627.03, whereas the corresponding dynamic estimate
is $612.09. For high-income households, the bias runs in the opposite direction
and the static model underestimates the willingness to pay by a factor of more
than 2. The biases for both crime and air pollution are such that the static
model always underestimates the willingness to pay. For low-income house-
holds, the static estimates are −$291�14 in the static case and −$350�18 in the
dynamic case, respectively, for a 10-percent increase in violent crime. The mag-
nitude of the bias grows significantly with income, and the corresponding fig-
ures for high-income households are −$448�88 and −$1298�81. In the case of
pollution, for low-income households, the static estimates are −$66�24 versus
−$302�06 in the dynamic case, again for a 10-percent increase in ozone, with
little change in the relative magnitude of the bias as income changes. In each
case, the differences are substantial and are precisely estimated. As can be in-
ferred from the above discussion, the income elasticities implied by the static
model are substantially smaller for both race and crime relative to the elastic-
ities from the dynamic model, apparent from the much steeper profiles in the
dynamic case; for ozone, the respective elasticities are fairly similar.

The signs of these biases are consistent with the discussion above. From a
different angle, it is also interesting to see whether these biases can be par-
tially explained by patterns in the actual variables themselves—instructive as
the omitted variable given by the equation is only known once the full struc-
tural model has been estimated. Regressions exploring the time-series patterns
of each (dis)amenity are shown in Table A.VI in Appendix A; also relevant to
the bias discussion are the predicted move probabilities, which are 0.083, 0.12,
0.16 for the three income types, $40,000, $120,000, and $200,000, when aver-
aged across neighborhoods, time, and wealth/geographic preferences types.

For all results, the time-series patterns are consistent with the biases found:
for pollution and crime, higher ozone and crime rates this period predict larger
falls (or smaller increases) in ozone and crime one period ahead. As the move
probabilities are positive and get larger with income, we should expect that the
static model would always be biased downward and that the bias would grow
with income. This is almost exactly what we see.69

For race, higher percent white this period predicts larger increases (or
smaller reductions) in percent white one period ahead. The race-persistence
effect and the move-probability effect go in opposite directions, so one cannot
predict the bias. However, the static model bias should vary with income and
the static model will be most likely to understate the willingness to pay when
income is high, which again is what we find.

69The high-income bias for ozone is no bigger than the medium-income bias.
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It is worth emphasizing that the transition probability regressions shown in
Table A.VI were not used in our estimation routine; there, we used lagged
attributes to predict future value functions directly, rather than using them
to predict future amenities. As we do not use the time-series patterns of the
amenities directly in our estimation, we draw additional confidence from the
fact that our empirical results are consistent with these patterns.

6.2. Geographic Heterogeneity

Table VII reports the marginal willingness to pay for a 10-percent change
in each amenity derived from the dynamic version of the model where we do
not control for unobserved geographic heterogeneity. Similarly to before, the
willingness to pay varies with income, and the earlier dynamic results from
Table V are also included for ease of reference.

As can be seen from Table VII, with the exception of willingness to pay for
ozone, failing to control for unobserved geographic heterogeneity results in
nontrivial underestimates of willingness to pay in absolute terms. This bias-
towards-zero feature is most pronounced for high-income households.

A revealed preference interpretation analogous to the static bias story above
provides an intuitive way to think about these patterns. For a given set of
neighborhood location decisions, a larger long-run difference in exposure to
crime maps into a smaller estimated absolute distaste for crime. The over-
all transition probabilities for the neighborhood values are very similar in
both models. However, the likely destination next period is different when we
control for unobserved heterogeneity. In particular, if a household is placed
in a random neighborhood, the heterogeneity model predicts that they are
more likely to move, which would result in smaller differences in exposure
to crime when geographic preferences are included. This suggests that remov-
ing the heterogeneity controls should reduce the willingness to pay in absolute
value.

TABLE VII

WILLINGNESS TO PAY FOR A 10-PERCENT INCREASE IN AMENITIES—NO GEOGRAPHIC
HETEROGENEITY VERSUS GEOGRAPHIC HETEROGENEITY ESTIMATES BY INCOME

No Geographic Heterogeneity Geographic Heterogeneity

$40,000 $120,000 $200,000 $40,000 $120,000 $200,000

Percent white 149.73 1361.78 3016.52 612.09 2428.93 4888.46
(76.70) (107.03) (177.25) (87.09) (121.89) (275.08)

Violent crime −304.50 −700.51 −847.92 −350.18 −962.20 −1298.81
(45.34) (64.26) (80.05) (47.68) (67.29) (92.79)

Ozone −331.56 −406.07 −390.40 −302.06 −380.03 −395.58
(24.52) (29.68) (42.94) (24.82) (26.98) (37.12)
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Most of the willingness-to-pay coefficients are substantially larger in the
heterogeneity model, as noted. And the model does predict higher mobil-
ity when controlling for heterogeneity. The predicted income-specific move
probabilities are 0.083, 0.12, 0.16 in the heterogeneity model, but only 0.038,
0.061, and 0.089 in the no-heterogeneity model, which is consistent with higher
willingness-to-pay estimates in the heterogeneity model and the notion that
this difference would increase in income.70

The results of the static model without controls for unobserved geographic
heterogeneity are almost identical to the static results reported in Table VI
and can be found in Table A.VII in Appendix A. The similarity arises because,
for any level of geographic sub-region preferences, the model predictions for
within-sub-region shares are identical. Therefore, once sub-region dummies
are included as controls, a regression of estimated utilities (simply log esti-
mated shares in the static model) on neighborhood characteristics will yield
the same coefficients on the neighborhood amenities and result in the same
willingness-to-pay estimates.71 In other words, if the true model is dynamic,
then the regional preferences predict different choice probabilities through a
mechanism that the static model omits and, as such, the static model cannot
make the correct inference.

6.3. Borrowing Constraints

We close the empirical analysis with a consideration of the possibility that
borrowing constraints might affect the estimated measures of WTP for local
amenities. Broadly speaking, the concern is that the inability to obtain a mort-
gage for their most preferred housing option forces some households to settle
for a lower priced home.

The potential bias from credit constraints is a function of several consider-
ations including: (i) the general tightness of credit in the mortgage market,
(ii) the types of households that are most likely to be credit constrained (i.e.,
types of households that want to buy a house that is more expensive than the
largest mortgage for which they can qualify), and (iii) the diversity of homes
available in each neighborhood.

We expect the bias from credit constraints to be relatively small in our ap-
plication for two main reasons. First, the period that we study was one of wide
availability of mortgage credit in the United States. At the height of the hous-
ing boom, households could routinely qualify for mortgages with a very little

70The actual mobility rates for the three groups are remarkably similar: 0.0767, 0.0752, and
0.0763. As these just represent data, they do not vary across dynamic models. However, as the
identification comes from comparing counterfactual neighborhoods, the neighborhood-specific
model-predicted mobility rates are what is important.

71The fact that we have any change in the static results occurs because we impose a different
price coefficient (which we estimate from the move/stay decision) and because when we add
unobserved heterogeneity, the move/stay decisions play an additional minor role in identifying ṽ.
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money down and without having to verify their income or assets. As a result, if
a household really wanted to buy a particular house, getting a corresponding
mortgage was generally not very difficult. (This, of course, would not be true
in more recent years.)

A second reason that we expect the bias from credit constraints to be
relatively small in our application is that we model the choice of relatively
large neighborhoods. The housing stock in each neighborhood is quite het-
erogeneous and so houses are available at a wide range of prices in each
neighborhood. As a result, credit-constrained households that have a rela-
tively strong preference for neighborhood amenities can generally satisfy their
tastes by buying a somewhat smaller or lower quality house in these neighbor-
hoods.

As a robustness check, we have also estimated a variant of the model. In
particular, Table A.VIII in Appendix A presents results analogous to Table V
for a specification that estimates the model while imposing a rule that house-
holds cannot choose a neighborhood if the 10th percentile of housing prices
in that neighborhood is too high relative to either their wealth or income, so
that these neighborhoods are out of the choice set. The rule that we use is to
exclude neighborhoods for a given household type if either (i) wealth is less
than 10 percent of this neighborhood price level or (ii) 45 percent of income is
less than the user cost implied by this neighborhood price level. More specif-
ically, we estimate equation (29) by dropping neighborhood-by-type observa-
tions which fail this affordability rule.72

These constraints ensure that households of a given type should have ab-
solutely no problem securing a mortgage for a minimum of 10 percent of the
homes in any neighborhood that is included in their choice set. In all likeli-
hood, the fraction of affordable homes in these neighborhoods is much larger,
as many households (9.8 percent of all purchases in the data) buy a house
with strictly less than the 10 percent down payment required in (i). In fact, the
rule that we impose appears to be quite restrictive as it removes many neigh-
borhoods from consideration that actually have small, but nontrivial, market
shares for each household type.

The results for this alternative specification lead to modest increases in
the WTP estimates, especially for lower income households who are most
affected by the imposition of this credit constraint rule. The qualitative pat-
tern of the results, however, remains very much in line with our baseline esti-
mates.

A more formal treatment of borrowing constraints, which would separately
identify the effects of credit constraints from the curvature of the utility func-
tion, would require data on the supply of mortgage credit and likely a gen-

72We do not impose the rule while estimating the shares in equation (21) as, in the limit,
the data will either reject the constraint or the constraint will not affect the household-specific
component of the estimation procedure.
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eralization of our model to include the joint decision of home purchase and
mortgage contract. Without data on the supply of mortgage credit, it is gen-
erally impossible to identify whether neighborhoods are truly unavailable to
certain household types or whether these households simply are unwilling to
pay the required user cost to live in those neighborhoods.

Finally, it is important to emphasize that credit constraints may play a
greater role in other settings, especially when mortgage credit is not readily
available without a substantial down payment.

7. CONCLUSION

While models of residential sorting and hedonic equilibrium have been the
focus of a substantial body of research, almost all existing empirical studies
have adopted a static estimation approach. This is with good reason: computa-
tional and data issues have made the estimation of dynamic models extraordi-
narily difficult. Yet location decisions are inherently dynamic, and this has led
to concerns that estimates from static models may be biased.

In this paper, we developed a tractable dynamic model of neighborhood
choice that controls for unobserved household and neighborhood heterogene-
ity, along with a computationally straightforward semiparametric estimation
approach. Our neighborhood choice model and estimator adapt dynamic de-
mand models for durable and storable goods for use in a housing market con-
text, building on this class of models in several ways: (i) treating the house as an
asset and allowing household wealth to evolve endogenously, (ii) using stable,
uniform realtor fees to estimate the marginal utility of consumption without
the need for a price instrument, and (iii) relaxing the strong assumption about
the evolution of the continuation value that is standard in the existing litera-
ture.

We estimated the model using a newly assembled data set that combines
the universe of housing transactions in the San Francisco Bay Area from 1994
to 2004 with publicly available mortgage application data that provide demo-
graphic and financial information about homebuyers. The resulting estimates
indicate that the biases associated with static demand estimation are significant
for three important non-marketed amenities: air quality, crime, and neighbor-
hood race. The signs of the biases are consistent with what one would expect
based on the time-series properties of each amenity.

Looking ahead, the model and estimation procedure presented in this paper
have the potential to be applied to study a broad range of dynamic phenom-
ena in housing markets and cities—among them, neighborhood tipping and
gentrification. Given that the kinds of transactions data required to estimate
the model are becoming more widely available for cities in the United States
and elsewhere, this makes the exploration of such dynamic issues increasingly
viable.
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APPENDIX A: TABLES

TABLE A.I

COMPARISON OF SAMPLE STATISTICS FOR MERGED DATA AND
IPUMS DATA BY BAY AREA COUNTY

ALAM C.C. MARIN S.F. S.M. S.C.

HMDA/Transactions Data
Median income 82,311 77,571 117,533 104,791 108,900 101,472
Mean income 98,184 97,362 145,996 133,596 130,385 120,683
Std. dev. income 90,915 88,132 103,248 128,747 93,606 116,969

IPUMS
Median income 83,400 76,785 120,000 100,000 102,400 100,000
Mean income 104,167 99,047 162,322 137,555 140,447 124,483
Std. dev. income 84,823 83,932 138,329 121,552 123,451 99,373

HMDA/Transactions Data
Percent white 47.27 62.85 83.29 54.17 56.00 47.58
Percent Asian 24.17 9.07 3.18 28.64 24.97 31.05
Percent black 6.23 5.31 0.41 1.88 0.99 1.26
Percent Hispanic 11.49 11.34 1.80 5.88 9.08 10.61

IPUMS
Percent white 47.64 64.57 87.5 61.92 58.1 50
Percent Asian 27.34 11.37 3.3 23.37 25.41 33.51
Percent black 7.77 6.05 2.3 2.8 1.24 1.16
Percent Hispanic 14.62 14.2 3.62 8.18 12.5 12.09

TABLE A.II

COMPARISON OF SAMPLE STATISTICS FOR TRANSACTIONS DATA AND MERGED DATA

Variable Obs. Mean Std. Dev. Min. Max.

Transactions Data
Sale price 1,101,902 351,464 213,057 18,034 1,441,269
Lot size 1,101,902 6791 11,060 0 199,940
Square footage 1,101,902 1647 714 400 10,000
Number bedrooms 1,101,902 3�00 1�09 0 8
Number rooms 1,101,902 6�75 2�01 1 18

Merged HMDA/Transactions Data
Sale price 606,163 389,790 209,527 18,075 1,441,269
Lot size 606,163 6661 10,506 0 199,940
Square footage 606,163 1632 685 400 9430
Number bedrooms 606,163 2�97 1�10 0 8
Number rooms 606,163 6�70 1�99 1 18
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TABLE A.III

VALUE FUNCTION TRANSITION PROBABILITY PARAMETERSa

25th Percentile 50th Percentile 75th Percentile

vτ −0.39205 −0.21532 −0.16618
Sales Price −0.00300 −0.00178 −0.00084
Percent White −0.03833 −0.03137 −0.02455
Violent Crime −0.00015 −0.00008 −0.00004
Ozone −0.01203 −0.01075 −0.00778

aPercentiles of
∑2

l=1 ρ
τ
l

across τ as defined in (25).

TABLE A.IV

PRICE TRANSITION PROBABILITY PARAMETERSa

Pricet+1

Sales pricet 0.385
(0.221)

Percent whitet 1.643
(1.283)

Violent crimet −0.045
(0.012)

Ozonet 0.362
(0.447)

Sales pricet−1 −0.245
(0.021)

Percent whitet−1 1.438
(1.484)

Violent crimet−1 0.053
(0.013)

Ozonet−1 1.916
(0.393)

Neighborhood dummies Yes
Neighborhood time trends Yes

aEstimates of � as defined in (26).
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TABLE A.V

DECOMPOSITION OF FLOW UTILITIES—RAW PARAMETER ESTIMATES

I II III IV

Percent white 0.00824 0.00903 0.00799 0.00858
(0.00026) (0.00033) (0.00025) (0.00032)

Violent crime −0.00043 −0.00035 −0.00041 −0.00032
(0.00002) (0.00002) (0.00002) (0.00002)

Ozone −0.04217 −0.03697 −0.04068 −0.03508
(0.00285) (0.00308) (0.00276) (0.00307)

County dummies Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes
Type dummies Yes Yes Yes Yes
Estimator LAD OLS LAD OLS
Wealth outliers NO NO YES YES

TABLE A.VI

TIME-SERIES PROPERTIES OF AMENITIESa

� Percent Whitet+1 � Violent Crimet+1 � Ozonet+1

Percent whitet 0.0156 −0.4466 0.0089
(0.0014) (0.1123) (0.0027)

Violent crimet 0.0010 −0.1520 −0.0016
(0.0001) (0.0083) (0.0002)

Ozonet −0.0162 −0.5958 −0.6566
(0.0105) (0.8491) (0.0201)

County dummies Yes Yes Yes
Year dummies Yes Yes Yes

aFor the dependent variable, �Xt+1 =Xt+1 −Xt .

TABLE A.VII

WILLINGNESS TO PAY FOR A 10-PERCENT INCREASE IN AMENITIES BY INCOME—STATIC
MODEL WITH NO GEOGRAPHIC HETEROGENEITY

$40,000 $120,000 $200,000

Percent white 1605.19 1840.00 2171.76
(11.36) (14.55) (37.19)

Violent crime −277.59 −357.94 −434.80
(7.33) (9.20) (15.84)

Ozone −65.57 −78.23 −95.85
(1.87) (2.22) (3.01)
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TABLE A.VIII

WILLINGNESS TO PAY FOR A 10-PERCENT INCREASE IN AMENITIES BY INCOME—DYNAMIC
MODEL WITH LIQUIDITY CONSTRAINT

$40,000 $120,000 $200,000

Percent white 864.12 2609.99 5254.57
(90.95) (123.10) (293.79)

Violent crime −435.25 −1023.63 −1390.57
(49.07) (73.28) (96.42)

Ozone −315.65 −390.61 −410.42
(28.95) (30.23) (40.32)

APPENDIX B: UNOBSERVED HETEROGENEITY—CHOICE PROBABILITIES
AND LIKELIHOOD CONTRIBUTIONS

The analogous unobserved-type-specific choice probabilities to the ‘no un-
observed heterogeneity’ case are defined as follows:

P
τ̄�g
j�t = e

ṽτ̄j�t+φ1[Gj=g]

J∑
k=1

eṽ
τ̄
k�t

+φ1[Gk=g]

�(B.1)

P
τ̄�g
0�t = eṽ

τ̄
0�t

J∑
k=0

eṽ
τ̄
k�t

+φ1[Gk=g]

�(B.2)

P
τ�τ̄�g
stay�i�t =

eṽ
τ
J+1�t+φ1[GJ+1=g]

eṽ
τ
J+1�t+φ1[GJ+1=g] +

J∑
k=0

eṽ
τ̄
k�t

+φ1[Gk=g]−FMCi�t γ
τ̄
fmc−Z̄′

i�t γpmc

�(B.3)

Similarly, we can define unobserved-type-specific likelihood contributions as
follows:

L
neigh
i�g (ṽ�φ)=

J∏
j=1

(
P

τ̄�g
j�t1�i

)1[di�t1�i=j]
�(B.4)

Lout
i�g (ṽ�φ)= (

P
τ̄�g
0�t2�i

)1[di�t2�i=0](1 − P
τ̄�g
0�t2�i

)1[di�t2�i ∈{1�����J}]
�(B.5)

L
stay
i�g (ṽ�φ�γfmc�γpmc)=

t1�i+Ti∏
t=t1�i+1

(
P

τ�τ̄�g
stay�i�t

)1[di�t=J+1](1 − P
τ�τ̄�g
stay�i�t

)1[di�t �=J+1] �(B.6)
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